Show all work.

1. (20 points)
 A sample of radioactive material disintegrates from 6 grams to 2 grams in 50 days.
 (a) Find a formula for \(y(t) \), the amount of the radioactive material left after \(t \) days.
 (b) After how many days will just 1 gram remain?

2. (25 points)
 Sketch the graphs of the constant solutions and the solution curves corresponding to the given initial conditions:
 (a) \(y' = 8 - 2y;\ y(0) = 2,\ y(0) = 4.\)
 (b) \(y' = -(y + 3)(y - 5);\ y(0) = -4,\ y(0) = 2,\ y(0) = 6.\)

3. (30 points)
 (a) Solve the differential equation \(y' = te^{2y}.\)
 (b) Solve the given differential equation with initial condition \(y' = y^2 - e^{3t}y^2,\ y(0) = 1.\)

4. (25 points)
 A pond presently has 5,000 fish. The birth rate of the fish is 3\% month and the death rate is 1\% per month.
 (a) Write a differential equation for \(y = f(t) \), the number of fish in the pond at time \(t \).
 (b) The farmer who owns the pond wants to harvest \(M \) fish per month. Write down a new differential equation satisfied by \(y = g(t) \), the number of fish in the pond after \(t \) months. What is the maximum number of fish he can harvest each month and ensure that the fish population will not die out?