1. (a) (13 points) Show that an otherwise polynomial-time algorithm that makes at most a constant number of calls to polynomial-time subroutines runs in polynomial time;

Proof: Assume that for $1 \leq i \leq c$ our algorithm calls a subroutine S_i with input x_i of binary length m_i. Assume that S_i performs at most n^{e_i} binary operations on inputs of length n, where e_i doesn’t depend on n. Let n^{e_0} is an upper bound for the running time for our algorithm on input of length n – without the subroutine calls. Then

$$n^{e_0} + m_1^{e_1} + \ldots + m_c^{e_c}$$

is the total running time of the algorithm (with subroutine calls) on an input of length n. Here c, e_0, \ldots, e_c do not depend on n. By induction we will prove that the input size m_i of S_i is at most n^{f_i} for $f_i \leq \prod_{j=0}^{i-1} e_j$ – not depending on n. For $i = 1$ we have $f_1 \leq e_0$, which proves the base case. Assume that the $m_{i-1} \leq n^{f_{i-1}}$. Then the output size of S_{i-1} is at most $(n^{f_{i-1}})^{e_{i-1}}$, therefore the input size of S_i is at most $(n^{f_{i-1}})^{e_{i-1}} = n^{f_i (e_{i-1})}$. (We can assume without loss of generality that the output of S_{i-1} is the input of S_i.) Therefore, $f_i \leq \prod_{j=0}^{i-1} e_j$, which proves the inductive step. Thus we have that the total running time is at most

$$n^{e_0} + (n^{f_1})^{e_1} + \ldots + (n^{f_c})^{e_c} \in O\left(n^{\max_{j=0}^{c} e_j} \right)$$

and the exponent of the right hand side does not depend on n.

(b) (12 points) Show that a polynomial number of calls to polynomial time subroutines may result in an exponential-time algorithm.

Proof: Here is an example for such algorithm: Each subroutine S_i has running time at most n^{e_i} for inputs of size n, but the input size of S_i is $m_i := 2^{i-1} n$. For example S_i squares its input x in linear time. Then S_n has input size $2^{n-1} n$, so its running time is linear in $2^{n-1} n$, which is not polynomial time.

2. (15 points) The **subgraph-isomorphism problem** takes two graphs G_1 and G_2 and asks whether G_1 is isomorphic to a subgraph of G_2. (Two graphs are isomorphic, if there is a permutation of the vertices which transform one graph into the other, preserving the edges). Prove that the subgraph isomorphism problem is NP-complete, using NP-complete problems discussed in class.

Proof: First we prove that the **subgraph-isomorphism problem** is in NP. The certificate is $(G_1 = (V_1, E_1), G_2 = (V_2, E_2), \phi : V_1 \rightarrow V_2)$. The verifying algorithm checks if ϕ is a one-to-one function, and for all $u, v \in V_1$ whether $(u, v) \in E_1$ if and only if $(\phi(u), \phi(v)) \in E_2$.

1
Secondly, we prove that CLIQUE \(\leq_p \) SUBGRAPH ISOMORPHISM. Let \((G = (V, E), k)\) be an input instance for CLIQUE. Define \(G_1\) to be the complete graph on \(k\) vertices, and \(G_2\) to be the graph \(G\). Then \((G_1, G_2) \in\) SUBGRAPH ISOMORPHISM if and only if \((G, k) \in\) CLIQUE.

3. Textbook, page 40 / 2.10 (i) and (iii)
Let \(R\) be a ring (commutative, with 1) and \(a = \sum_{i=0}^{n} a_i x^i \in R[x]\) of degree \(n\), all \(a_i \in R\). The weight \(w(a)\) of \(a\) is the number of nonzero coefficients of \(a\) besides the leading coefficient:
\[
w(a) : = \#\{0 \leq i < n : a_i \neq 0\}.
\]
Thus \(w(a) \leq \deg(a)\), with equality if and only if all coefficients of \(a\) are nonzero. The sparse representation of \(a\) is a list \((i, a_i)_{i \in I}\), with each \(a_i \in R\) and \(a = \sum_{i \in I} a_i x^i\). Then we can choose \#\(I = w(a) + 1\).

(i) (15 points) Show that two polynomials \(a, b \in R[x]\) of weight \(w(a) = n\) and \(w(b) = m\) can be multiplied in the sparse representation using at most \(2nm + n + m + 1\) arithmetic operations in \(R\).

Solution: We modify the polynomial multiplication algorithm (ALGORITHM 2.3) as follows:

SPARSE POLYNOMIAL MULTIPLICATION
INPUT: \(I, J \subset \mathbb{N}, a = [(i, a_i)]_{i \in I}, b = [(j, b_j)]_{j \in J}\) polynomials given in sparse representation
OUTPUT: \(c = a \cdot b\) given in its sparse representation \([(k, c_k)]_{k \in K}\) with \(K \subset \mathbb{N}\).
1. \(K : = \{\}\)
2. \(\text{while } i \in I \text{ do}\)
3. \(\qquad \text{while } j \in J \text{ do}\)
4. \(\qquad \qquad \text{if } i + j \in K \text{ then}\)
5. \(\qquad \qquad \quad c_{i+j} := c_{i+j} + a_i \cdot b_j\)
6. \(\qquad \text{else}\)
7. \(\qquad \quad K := K \cup \{i + j\}\)
8. \(\qquad \quad c_{i+j} := a_i \cdot b_j\)
9. \(\text{fi}\)
10. \(\text{od}\)
11. \(\text{od}\)
12. \(\text{return } [(k, c_k)]_{k \in K}\)

Assume that \#\(I = m+1, \#J = n+1\). Then the above algorithm requires \((n+1)(m+1)\) multiplications in \(R\). The algorithm also conducts an addition in \(R\) if the exponent \(i + j\) was already in \(K\). Thus the total number of additions in \(R\) is \((n+1)(m+1) - \#K\).
Since \#\(K \geq n + m + 1\) (which is the dense case), we have that the number of additions in the worst case is \((n+1)(m+1) - n + m + 1 = nm\). Thus we have at most \((n+1)(m+1) + nm = 2nm + n + m + 1\) arithmetic operations in \(R\).
(iii) (10 points) Let \(n \geq m \). Show that quotient and remainder on division of a polynomial \(a \in R[x] \) of degree less than \(n \) by \(b \in R[x] \) of degree \(m \), with \(\text{l.c.}(b) \) a unit, can be computed using \(n - m \) divisions in \(R \) and \(w(b) \cdot (n - m) \) multiplications and subtractions in \(R \) each.

Proof: The polynomial division algorithm (ALGORITHM 2.5) requires \(n - m \) divisions in \(R \), and \(n - m \) constant multiplication and subtraction of the polynomial \(b \). Since the leading term is always 0 after the subtraction of the constant multiple of \(b \), we do not need to compute that term. Therefore each of these polynomial subtractions and multiplications only need \(w(b) \) operations over \(R \), even though \(b \) has \(w(b) + 1 \) terms. Therefore the algorithm uses \(w(b)(n - m) \) subtractions and \(w(b)(n - m) \) multiplications over \(R \).

4. Textbook, page 60/ 3.25 (ii) (10 points)

Proof of correctness: Let \(a, b \in \mathbb{N} \) such that \(a \geq b > 0 \). We will consider the following four cases, corresponding to each line of the algorithm

1. If \(a = b \) then \(\gcd(a, b) = a \).
2. If both \(a \) and \(b \) are even then 2 divides the \(\gcd \) and clearly \(\gcd(a, b) = 2 \gcd(a/2, b/2) \).
3. Assume that exactly one among \(a \) and \(b \) are even, say \(a \). Then 2 does not divide the \(\gcd \) and clearly \(\gcd(a, b) = \gcd(a/2, b) \).
4. Assume that neither \(a \) nor \(b \) are even. Let \(d := \gcd(a, b) \) and \(d' = \gcd((a - b)/2, b) \). Since \(d \) divides \(a \) and \(b \), it also divides \(a - b \). But since \(d \) is odd and \(a - b \) is even, \(d \) must divide \((a - b)/2 \). This implies that \(d \) divides \(d' \).

On the other hand, \(d' \) divides \(b \) and \((a - b)/2 \), thus it also divides \(a - b \). This implies that \(d' \) divides both \(a \) and \(b \), so it also divides their \(\gcd \) \(d \). Thus \(d \) and \(d' \) must be equal.

Since this four cases cover all possibilities, the algorithm returns the correct answer.

(iii) (10 points) **Solution:**

An upper bound for the depth of the recursion depth is

\[
\lceil \log_2(a) \rceil + \lceil \log_2(b) \rceil.
\]

Assume that the binary length of \(a \) and \(b \) together is \(n \), i.e. \(n = \lceil \log_2(a) \rceil + \lceil \log_2(b) \rceil \).
Then running time satisfies the following recursive inequality:

\[
T(n) \leq T(n - 1) + c \cdot n.
\]

The solution for this is

\[
T(n) \leq \sum_{i=0}^{n} c \cdot i = c \cdot \frac{(n+1)n}{2} \implies T(n) \in O(n^2).
\]
(iv) (15 points) Solution:

INPUT: $a, b \in \mathbb{N}$ such that $a \geq b > 0$

OUTPUT: $\gcd(a, b), s(a, b), t(a, b) \in \mathbb{Z}^3$ such that $\gcd(a, b) = s(a, b) \cdot a + t(a, b) \cdot b$.

1. if $a = b$ then return $\gcd(a, b) = a$ and $s(a, b) = 1, t(a, b) = 0$.
2. if both a and b are even then return $\gcd(a, b) = 2 \gcd(a/2, b/2), s(a, b) : = s(a/2, b/2), t(a, b) := t(a/2, b/2)$.
3. if exactly one among a and b are even, say a, then
4. if S is even then return $\gcd(a, b) = \gcd(a/2, b), s(a, b) := (S \pm b)/2, t(a, b) := (T \mp a)/2$
5. if neither a nor b are even then
6. if S is even then return $\gcd(a, b) = \gcd((a-b)/2, b), s(a, b) := S/2, t(a, b) := T - S/2$
7. else return $s(a, b) := (S \pm b)/2, t(a, b) := T - (S \pm a)/2$