Cactus Varieties of Cubic Forms

Kristian Ranestad

University of Oslo

Montevideo, Dec 18. 2014
Report on

The dimension of cactus varieties of cubic forms, arXiv:1211.7306 (version 3)

Alessandra Bernardi (Università di Bologna),
Joachim Jelisiejew (University of Warsaw),
Pedro Macias Marques (Universidade de Évora).
KR
Let $X \subset \mathbb{P}^N$ be a smooth projective variety of dimension n.

Definition

The r-th secant variety $\text{Sec}_r(X)$ is the closure of the union of $r - 1$-dimensional linear spaces $L \subset \mathbb{P}^N$ that intersect X in r linearly independant points.

$$\dim \text{Sec}_r(X) \leq \min\{nr + r - 1, N\}.$$
Let $X \subset \mathbb{P}^N$ be a smooth projective variety of dimension n.

Definition

The r-th secant variety $Sec_r(X)$ is the closure of the union of $r - 1$-dimensional linear spaces $L \subset \mathbb{P}^N$ that intersect X in r linearly independant points.

\[\dim Sec_r(X) \leq \min \{nr + r - 1, N\}. \]

Definition

The r-th cactus variety $Cactus_r(X)$ is the closure of the union of $r - 1$-dimensional linear spaces L in \mathbb{P}^N that intersect X in a scheme of length r that spans L. Clearly $Sec_r(X) \subset Cactus_r(X)$.

When is $Sec_r(X) \neq Cactus_r(X)$? What is $\dim Cactus_r(X)$?
Let $X \subset \mathbb{P}^N$ be a smooth projective variety of dimension n.

Definition

The r-th secant variety $\text{Sec}_r(X)$ is the closure of the union of $r - 1$-dimensional linear spaces $L \subset \mathbb{P}^N$ that intersect X in r linearly independant points.

$$\dim \text{Sec}_r(X) \leq \min\{nr + r - 1, N\}.$$

Definition

The r-th cactus variety $\text{Cactus}_r(X)$ is the closure of the union of $r - 1$-dimensional linear spaces L in \mathbb{P}^N that intersect X in a scheme of length r that spans L.

Clearly $\text{Sec}_r(X) \subset \text{Cactus}_r(X)$.

When is $\text{Sec}_r(X) \neq \text{Cactus}_r(X)$? What is $\dim \text{Cactus}_r(X)$?
Let \(X = X_{d,n} = \{ l^d | l \in \langle x_0, \ldots, x_n \rangle \} \subset \mathbb{P}(\mathbb{C}[x_0, \ldots, x_n]_d) \).

If \(d = 2 \) or \(n \leq 3 \), then

\[
\text{Sec}_r(X_{d,n}) = \text{Cactus}_r(X_{d,n})
\]
We specialize to

$$X = X_{3,n} = \{l^3 | l \in \langle x_0, \ldots, x_n \rangle \} \subset \mathbb{P}(\mathbb{C}[x_0, \ldots, x_n]_3).$$

If $[F] \in \text{Sec}_r(X_{3,n})$ is a general point, then

$$F = l_1^3 + \ldots + l_r^3 \quad l_1, \ldots, l_r \in \langle x_0, \ldots, x_n \rangle.$$

F has rank r.

Kristian Ranestad

Cactus Varieties of Cubic Forms
We specialize to

\[X = X_{3,n} = \{ l^3 | l \in \langle x_0, \ldots, x_n \rangle \} \subset \mathbb{P}(\mathbb{C}[x_0, \ldots, x_n]_3). \]

If \([F] \in Sec_r(X_{3,n})\) is a general point, then

\[F = l_1^3 + \ldots + l_r^3 \quad l_1, \ldots, l_r \in \langle x_0, \ldots, x_n \rangle. \]

\(F\) has rank \(r\).

Let \([F] \in Cactus_r(X_{3,n})\) be a general point. Then \(F\) has cactus rank \(r\).

What does \(F\) look like?
Local cactus rank

Definition

The local cactus rank of F is the smallest length of a local scheme in $X_{3,n}$ whose linear span contains $[F]$.

Theorem

For a general cubic form $F \in S = \mathbb{C}[x_0, \ldots, x_n]^3$ with $n \geq 8$, the cactus rank coincides with the local cactus rank. Thus the cactus rank is computed by a scheme supported at a point $l_3 \in X_{3,n}$ where l is some linear form.
Definition

The local cactus rank of F is the smallest length of a local scheme in $X_{3,n}$ whose linear span contains $[F]$.

Theorem

For a general cubic form $F \in S = \mathbb{C}[x_0, \ldots, x_n]_3$ with $n \geq 8$, the cactus rank coincides with the local cactus rank.

Thus the cactus rank is computed by a scheme supported at a point $[l^3] \in X_{3,n}$ where l is some linear form.
Let \(l \in \langle x_0, \ldots, x_n \rangle \) and let \(D_l = l^\perp \subset \langle \partial/\partial x_0, \ldots, \partial/\partial x_n \rangle \). Let

\[L_{F,l} = \langle F, \ l \cdot (D_l(F)), \ l^2 \cdot (D_l^2(F)), \ l^3 \rangle \subset \mathbb{P}(\mathbb{C}[x_0, \ldots, x_n]_3) \]
A natural local scheme $Z_{F,l} \subset X_{3,n}$

Let $l \in \langle x_0, \ldots, x_n \rangle$ and let $D_l = l^\perp \subset \langle \partial/\partial x_0, \ldots, \partial/\partial x_n \rangle$. Let

$$L_{F,l} = \langle F, \ l \cdot (D_l(F)), \ l^2 \cdot (D^2_l(F)), \ l^3 \rangle \subset \mathbb{P}(\mathbb{C}[x_0, \ldots, x_n]_3)$$

Denote by

$$Z_{F,l} = L_{F,l} \cap X_{3,n},$$

it is a finite local subscheme supported at $[l^3]$ that spans $L_{F,l}$ and has length equal to

$$\dim_\mathbb{C} \text{Diff}(F(l = 1))$$

the dimension of the space of partials of all orders of the dehomogenization $F(l = 1)$.
A natural local scheme $Z_{F,l} \subset X_{3,n}$

Let $l \in \langle x_0, \ldots, x_n \rangle$ and let $D_l = l^\perp \subset \langle \partial/\partial x_0, \ldots, \partial/\partial x_n \rangle$. Let

$$L_{F,l} = \langle F, \ l \cdot (D_l(F)), \ l^2 \cdot (D_l^2(F)), \ l^3 \rangle \subset \mathbb{P}(\mathbb{C}[x_0, \ldots, x_n]_3)$$

Denote by

$$Z_{F,l} = L_{F,l} \cap X_{3,n},$$

it is a finite local subscheme supported at $[l^3]$ that spans $L_{F,l}$ and has length equal to

$$\dim_{\mathbb{C}} \text{Diff}(F(l = 1))$$

the dimension of the space of partials of all orders of the dehomogenization $F(l = 1)$.

Since $[F] \in L_{F,l}$, the cactus rank and the local cactus rank of F is bounded above by $\dim_{\mathbb{C}} \text{Diff}(F(l = 1))$
For a homogeneous form G of degree d, we may similarly define L_{G,x_0} and $Z_{G,x_0} = L_{G,x_0} \cap X_{d,n} \subset X_{d,n} = \mathbb{P}^n$, and consider the image of Z_{G,x_0} in $X_{3,n}$.

If

$$G(x_0 = 1) = g_d + g_{d-1} + \ldots + g_3 + g_2 + g_1 + g_0$$

and g_i is homogeneous of degree i, then

$$g_3 + g_2 + g_1 + g_0$$

is the degree 3 tail of $G(x_0 = 1)$.

Kristian Ranestad

Cactus Varieties of Cubic Forms
For a homogeneous form G of degree d, we may similarly define L_{G,x_0} and $Z_{G,x_0} = L_{G,x_0} \cap X_{d,n} \subset X_{d,n} = \mathbb{P}^n$, and consider the image of Z_{G,x_0} in $X_{3,n}$.

If

$$G(x_0 = 1) = g_d + g_{d-1} + \ldots + g_3 + g_2 + g_1 + g_0$$

and g_i is homogeneous of degree i, then

$$g_3 + g_2 + g_1 + g_0$$

is the degree 3 tail of $G(x_0 = 1)$.

Proposition

If $F(x_0 = 1)$ is the degree 3 tail of $G(x_0 = 1)$, then

$$[F] \in \langle Z_{G,x_0} \rangle \subset \mathbb{P}(\mathbb{C}[x_0, \ldots, x_n]_3)$$

*If Z computes the local cactus rank of F and is supported at $[x_0^3]$, then $Z = Z_{G,x_0}$ for some form G such that the degree 3 tail of $G(x_0 = 1)$ coincides with $F(x_0 = 1)$.***
Proposition

For a general cubic form $F \in S = \mathbb{C}[x_0, \ldots, x_n]$ with $n \geq 8$, the cactus rank is $2n + 2$, and it is computed by $Z_{F,l}$ for any l.

Kristian Ranestad

Cactus Varieties of Cubic Forms
Proposition

For a general cubic form $F \in S = \mathbb{C}[x_0, \ldots, x_n]$ with $n \geq 8$, the cactus rank is $2n + 2$, and it is computed by $Z_{F,l}$ for any l.

Proposition

For a general cubic form $F \in S = \mathbb{C}[x_0, \ldots, x_n]$ with $n \geq 8$ and even cactus rank $c \geq 18$, the cactus rank is computed by $Z_{F,l}$ for some l.
Proposition

For a general cubic form $F \in S = \mathbb{C}[x_0, \ldots, x_n]$ with $n \geq 8$, the cactus rank is $2n + 2$, and it is computed by $Z_{F,l}$ for any l.

Proposition

For a general cubic form $F \in S = \mathbb{C}[x_0, \ldots, x_n]$ with $n \geq 8$ and even cactus rank $c \geq 18$, the cactus rank is computed by $Z_{F,l}$ for some l.

Proposition

For a general cubic form $F \in S = \mathbb{C}[x_0, \ldots, x_n]$ with $n \geq 8$ and odd cactus rank $c \geq 17$, the cactus rank is not computed by $Z_{F,l}$ for any l.
A general cubic form $F \in S = \mathbb{C}[x_0, \ldots, x_n]$ with even local cactus rank $2m, m \leq n$ is projectively equivalent to some

$$f_3 + x_0 f_2 + x_0^2 f_1 + x_0^3 f_0$$

where

$$
\begin{align*}
f_3 & \in \mathbb{C}[x_1, \ldots, x_{m-1}]_3, \\
f_2 & \in \langle x_1, \ldots, x_n \rangle \cdot \langle x_1, \ldots, x_{m-1} \rangle, \\
f_1 & \in \langle x_1, \ldots, x_n \rangle, \\
f_0 & \in \mathbb{C}.
\end{align*}
$$
A general cubic form $F \in S = \mathbb{C}[x_0, \ldots, x_n]$ with even local cactus rank $2m, m \leq n$ is projectively equivalent to some

$$f_3 + x_0 f_2 + x_0^2 f_1 + x_0^3 f_0$$

where

$$f_3 \in \mathbb{C}[x_1, \ldots, x_{m-1}]_3,$$
$$f_2 \in \langle x_1, \ldots, x_n \rangle \cdot \langle x_1, \ldots, x_{m-1} \rangle,$$
$$f_1 \in \langle x_1, \ldots, x_n \rangle,$$
$$f_0 \in \mathbb{C}.$$

The forms of local cactus rank $2n$ form a family of codimension $\binom{n-1}{2} + 1$ in the space of cubic forms $\mathbb{C}[x_0, \ldots, x_n]_3$.
Corollary

If $n > 2$ and F is a general cubic form with local cactus rank $2m < 2n + 2$.

Then $V(F) \subset \mathbb{P}^n$ is singular along a linear subspace L of dimension $n - m$.

Furthermore there is a hyperplane $H \supset L$ such that $H \cap V(F)$ has multiplicity 3 along L.
A general cubic form $F \in S = \mathbb{C}[x_0, \ldots, x_n]$, with odd local cactus rank $2m + 1$, $m \leq n$ is projectively equivalent to some

$$f_3 + x_m x_1^2 + x_0 f_2 + x_0 x_m^2 + x_0^2 f_1 + x_0^3 f_0$$

where

$$f_3 \in \mathbb{C}[x_1, \ldots, x_{m-1}]_3,$$

$$f_2 \in \langle x_1, \ldots, x_n \rangle \cdot \langle x_1, \ldots, x_{m-1} \rangle,$$

$$f_1 \in \langle x_1, \ldots, x_n \rangle,$$

$$f_0 \in \mathbb{C}.$$
A general cubic form $F \in S = \mathbb{C}[x_0, \ldots, x_n]$, with odd local cactus rank $2m + 1$, $m \leq n$ is projectively equivalent to some

$$f_3 + x_m x_1^2 + x_0 f_2 + x_0 x_m^2 + x_0^2 f_1 + x_0^3 f_0$$

where

$$f_3 \in \mathbb{C}[x_1, \ldots, x_{m-1}]_3,$$
$$f_2 \in \langle x_1, \ldots, x_n \rangle \cdot \langle x_1, \ldots, x_{m-1} \rangle,$$
$$f_1 \in \langle x_1, \ldots, x_n \rangle,$$
$$f_0 \in \mathbb{C}.$$

The forms of local cactus rank $2n + 1$, $n > 3$ form a family of codimension $\binom{n-2}{2} - 1$ in the space of cubic forms $\mathbb{C}[x_0, \ldots, x_n]_3$.
Corollary

If $n > 2$ and F is a general cubic form with odd local cactus rank $2m + 1 < 2n + 2$. Then $V(F) \subset \mathbb{P}^n$ is singular along a linear subspace L of dimension $n - m - 1$.

Furthermore, there is a hyperplane $H \supset L$ such that $H \cap V(F)$ has a tangent cone which is a square along L.
The easy direction of the proof:
If
\[f = F(x_0 = 1) = f_3 + f_2 + f_1 + f_0 \]
where
\[f_3 \in \mathbb{C}[x_1, \ldots, x_{m-1}]_3, f_2 \in \langle x_1, \ldots, x_n \rangle \cdot \langle x_1, \ldots, x_{m-1} \rangle, \]
\[f_1 \in \langle x_1, \ldots, x_n \rangle, f_0 \in \mathbb{C}, \]
then
\[\dim_{\mathbb{C}} \text{Diff}(f) = \dim_{\mathbb{C}} \text{Diff}(f_3) = 2m \]
If

\[f = F(x_0 = 1) = f_3 + x_m x_1^2 + f_2 + x_m^2 + f_1 + f_0 \]

with general

\[f_3 \in \mathbb{C}[x_1, \ldots, x_{m-1}]_3, \ f_2 \in \langle x_1, \ldots, x_n \rangle \cdot \langle x_1, \ldots, x_{m-1} \rangle, \]

\[f_1 \in \langle x_1, \ldots, x_n \rangle, \ f_0 \in \mathbb{C}, \]

then

\[\dim_{\mathbb{C}} \text{Diff}(f) = \dim_{\mathbb{C}} \text{Diff}(f_3) = 2m + 2. \]
Let
\[g = \frac{1}{12} x_1^4 + f \]
\[= \frac{1}{12} x_1^4 + f_3 + x_m x_1^2 + f_2 + x_m^2 + f_1 + f_0, \]
then there exist \(\psi \in \mathbb{C}[\partial/\partial x_1, \ldots, \partial/\partial x_n]_2 \) such that
\[((\partial/\partial x_1)^2 - \psi)(g) = (\partial/\partial x_m)(g) = x_1^2 + 2x_m. \]
Therefore
\[((\partial/\partial x_1)^2 - (\partial/\partial x_m))g = \psi(g) \in \text{Diff}(x_1^4 + f_3 + f_2 + f_1 + f_0), \]
and
\[\dim_{\mathbb{C}} \text{Diff}(g) = \dim_{\mathbb{C}} \text{Diff}(x_1^4 + f_3 + f_2 + f_1 + f_0) \]
\[= \dim_{\mathbb{C}} \text{Diff}(f_3) + 1 = 2m + 1. \]
A simpler example with $n = m = 2$: Let
\[f = x_1^2 x_2 + x_2^2 \quad \text{and} \quad g = \frac{1}{12} x_1^4 + x_1^2 x_2 + x_2^2 \]
Then
\[\text{Diff}(f) = \langle f, x_1^2 + 2x_2, 2x_1 x_2, x_1, x_2, 1 \rangle \]
so
\[\dim_{\mathbb{C}} \text{Diff}(f^3) = 6. \]
A simpler example with $n = m = 2$:
Let
\[f = x_1^2 x_2 + x_2^2 \quad \text{and} \quad g = \frac{1}{12} x_1^4 + x_1^2 x_2 + x_2^2 \]
Then
\[\text{Diff}(f) = \langle f, x_1^2 + 2x_2, 2x_1 x_2, x_1, x_2, 1 \rangle \]
so
\[\dim_{\mathbb{C}} \text{Diff}(f_3) = 6. \]
On the other hand,
\[((\partial/\partial x_1)^2(g) = (\partial/\partial x_2)(g) = x_1^2 + 2x_2. \]
Therefore
\[\text{Diff}(g) = \langle g, \frac{1}{3}x_1^3 + 2x_1 x_2, x_1^2 + 2x_2, x_1, 1 \rangle \]
so
\[\dim_{\mathbb{C}} \text{Diff}(g) = 5. \]
A cubic surface (cubic form in 4 variables) have local cactus rank at most 6 if it has a singular point p and a hyperplane with a triple point at p. The family of such forms has codimension 2.

Every cubic surface (cubic form in 4 variables) has local cactus rank 7, since they all have a cuspidal tangent plane section (with a non reduced tangent cone at the singular point).
Casnati, Jelisiejew, Notari (2013):

Theorem

Every local Gorenstein scheme of length \(r \leq 13 \) *is smoothable.*

Iarrobino (< 1980):

Theorem

There exist nonsmoothable local Gorenstein schemes of length 14.

Buczyńska, Buczyński (2010):

Proposition

A finite scheme that computes the cactus rank of a form is locally Gorenstein.
Corollary

When \(r \leq 13 \), then

\[
Cactus_r(X_3, n) = \text{Sec}_r(X_3, n)
\]

When \(r \geq 14 \), then

\[
Cactus_r(X_3, n) \neq \text{Sec}_r(X_3, n)
\]
Theorem

When \(r \leq 17 \), then

\[
\dim \text{Cactus}_r(X_3, n) = \dim \text{Sec}_r(X_3, n) = \min \left\{ rn + r - 1, \binom{n + 3}{3} - 1 \right\}.
\]

When \(18 \leq r \leq 2n + 2 \), then

\[
\dim \text{Cactus}_r(X_3, n) =
\begin{cases}
(rn + r - 1) + \frac{r(r-2)(r-16)}{48} - 1 & \text{if } r \geq 18 \text{ even}, \\
(rn + r - 1) + \frac{(r-1)(r-3)(r-17)}{48} - 2 & \text{if } r \geq 19 \text{ odd}.
\end{cases}
\]
- If $Z \subset X_{3,n}$ computes the cactus rank of F, then it has components

$$Z = Z_1 \cup \ldots \cup Z_s$$

and $F = F_1 + \ldots + F_s$ such that Z_i computes the cactus rank of F_i.

Kristian Ranestad

Cactus Varieties of Cubic Forms
- If $Z \subset X_{3,n}$ computes the cactus rank of F, then it has components

$$Z = Z_1 \cup \ldots \cup Z_s$$

and $F = F_1 + \ldots + F_s$ such that Z_i computes the cactus rank of F_i.

- (Apolarity). Any finite local Gorenstein scheme is isomorphic to $Z_{G,l}$, defined like $Z_{F,l}$ for forms G of any degree.

- Use Iarrobino’s results on Artinian Gorenstein rings to parameterize the family of local Gorenstein schemes of given length.
Problem:

Find an effective algorithm to compute the local cactus rank of a cubic form F.
Problem:

Find an effective algorithm to compute the local cactus rank of a cubic form F.

Thank you