Abstract. How an agent trusts another naturally depends on the outcomes of their interactions. Previous approaches have treated the outcomes in a domain-specific way. We propose an approach relating trust to the domain-independent notion of commitments. We conduct an empirical study to evaluate our approach, in which subjects read emails extracted from the Enron dataset (augmented with some synthetic emails for completeness), and estimate trust between each pair of communicating participants. We propose a probabilistic model for trust based on commitment outcomes and show how to train its parameters for each subject based on the subject’s trust assessments. The results are promising, though imperfect. Our main contribution is to launch a research program into computing trust based on a semantically well-founded account of agent interactions.

1 Introduction

Understanding multiagent interactions and estimating trust from them is an interesting and challenging topic. Several approaches [7, 1] have been proposed to estimate trust from interactions. However, they are limited to numerical heuristics and ignore the essential intuitive aspects of trust. In contrast, we propose a probabilistic model of trust based on commitment outcomes that supports agents to determine their trust for others based on their interactions. Our model captures the intuition that both the trustee and the trustee are autonomous and the trustee is vulnerable to decisions of the trustee [2].

Commitments are important for trust because they can be identified from agents’ interactions and can help us characterize the outcomes of such interactions in high-level terms. A commitment C(debtor, creditor, antecedent, consequent) means that the debtor commits to bringing about the consequent when the antecedent holds. For example, C(Bob, Alice, deliver, pay) means that Bob (buyer) commits to Alice (seller) to paying a specified amount provided Alice delivers the goods. When Alice delivers, the commitment is detached. When Bob pays, the commitment is discharged or satisfied. If Alice delivers but Bob does not pay, the commitment is violated. In essence, a commitment describes a social relationship between two agents giving a high-level description of what one agent expects of the other. As a result, it is natural that commitments (and their satisfaction or violation) be used as bases for trust. In the above example, if Bob discharges the commitment, it brings a positive experience to Alice and Alice’s trust for Bob may increase; if Bob violates the commitment, it brings a negative experience to Alice and Alice’s trust for Bob may decrease.

We conduct an empirical evaluation on emails automatically analyzed using our previous approach [5]. We show how to train the model parameters so as to capture a user model indicating each user’s propensity to trust given commitment outcomes. Our evaluations yield promising, but imperfect, results on the viability of inferring trust from the commitments arising in interactions, suggesting the need for better extraction techniques. Our main contribution is to show how trust can be computed, not just theorized about, via the domain-independent concept of commitments.

2 Model of Trust based on Commitments

We adopt Wang and Singh’s [8] trust model, which represents trust as evidence (r, s). Here, $r \geq 0$ and $s \geq 0$ respectively represent the positive and negative experiences the trustee has with the trustee. Both r and s are real numbers. Wang and Singh calculate trust as the probability of a positive outcome as $\alpha = \frac{r}{r+s}$. Suppose Buck and Selia transact 10 times and exactly eight transactions succeed from Selia’s perspective. Then Selia’s trust in Buck would be 0.8.

The basic idea is for each trustee to maintain evidence (r, s) about each trustee. The initial evidence, (r_{in}, s_{in}), represents the trustee’s bias. An interaction may yield a positive, negative, or a neutral experience. In these cases, the evidence is updated by respectively adding $(i_r, 0)$, $(0, i_s)$, and $(\lambda r, (1-\lambda)s)$, where $\lambda \in [0,1]$. In essence, we characterize each trustee via five parameters $(i_r, i_s, r_{in}, s_{in}, \lambda)$.

2.1 Learning Trustees’ Trust Parameters

Trust assessment is subjective. Trusters differ in how they update their trust for a trustee when a commitment is discharged or violated, respectively. Therefore, we learn a specific trustee’s parameters based on positive, negative, and neutral experiences with various trustees and the trustee’s actual trust in them. For the kth trustee, let α_k represent the trustee’s actual (as revealed) and $\hat{\alpha}_k$ the trustee’s predicted trust in k. Let E^+_k, E^-_k, and E_k represent the numbers of positive, negative, and neutral experiences, respectively. Then,

$$\hat{\alpha}_k = \frac{r_{in} + E^+_k i_r + \lambda \cdot E_k i_r}{r_{in} + s_{in} + E^+_k i_r + E^-_k i_s + E_k (\lambda i_r + (1-\lambda)i_s)} \quad (1)$$

Via nonlinear least-squares regression technique that uses trust region reflective algorithm [5], we estimate the trustee’s parameters to minimize the mean absolute error (MAE) of prediction, $\sum_{k=1}^n |\hat{\alpha}_k - \alpha_k|$.
wherein we learned trust parameters for each subject (r, emails assigned to them. We conducted three-fold evaluation violation, which do not occur frequently in the corpus. 28 synthetic sentences indicating commitment satisfaction or ing Kalia et al.’s [5] approach. We augmented the dataset with satisfaction, or violation—such sentences were identified us- and receivers of email. The emails were selected on the basis provided a trust value ranging from 0 to 1 between the senders emails selected from the Enron email corpus [4, 6] and pro- subjects (computer science students). The subjects read 33 We evaluated our approach via an empirical study with 30

3 Evaluation and Results
We evaluated our approach via an empirical study with 30 subjects (computer science students). The subjects read 33 emails selected from the Enron email corpus [4, 6] and pro- provided a trust value ranging from 0 to 1 between the senders emails selected from the Enron email corpus [4, 6] and pro- subjects (computer science students). The subjects read 33

We collected the trust values from the subjects assigned to them. We conducted three-fold evaluation wherein we learned trust parameters for each subject (r_{in}, s_{in}, r_{i}, s_{i}, \lambda) that minimize MAE between predicted and actual trust values. For verifying our hypothesis, we calculated the MAE for \lambda in intervals of 0.1 to 0.9. Then, we calculated the MAE by learning the \lambda (L(\lambda)) itself. Based on the above MAEs, we obtained a customized \lambda (fixed or learned) for each subject. A customized \lambda for a subject refers to the value of \lambda for which the MAE is minimum. We represent the MAEs obtained using customized \lambda_\text{s for all subjects as C(\lambda) in Figure 1. Finally, we arbitrarily selected some fixed configurations of parameters (F_1 = (1, 1, 1, 1, 0.5), F_2 = (2, 1, 1, 1, 0.5), F_3 = (1, 2, 1, 1, 0.5)). F_1 indicates no bias in the initial trust perception whereas F_2 and F_3 indicate positive and negative biases respectively. And, \lambda=0.5 in the fixed configurations indicates equal trust increments for the neutral experiences. From the results, we observe that the median of C(\lambda) (0.162) is less than the medians of all other approaches. However, from the one-tailed t-test, we found that the mean of C(\lambda) is not significantly lower than the means of other approaches. The overall results suggest that although hypothesis is supported on descriptive grounds (apparent differences in MAE distributions), it cannot be asserted based on statistical sign-

4 Discussion and Future Work
The main contribution of our approach is to develop a computational approach for trust that overlays a domain-independent concept describing the social relationships and outcomes of interactions between agents. We evaluated our approach on an email dataset, comparing the means of the MAEs. The results indicate that our approach yields a corre- lation between subjects’ intuitions regarding trust values and those computationally predicted values. The limitation of our result may be due to the following reasons: (1) lack of ade- quate data (2) a greater fraction of experiences being judged neutral than positive or negative or (3) too small of a sample size for obtaining a sufficiently low p-value. Also, we lack an existing approach with which to compare our results.

In the future, we plan to address these limitations by adopting an incentive scheme that motivates subjects to provide trust values truthfully. Moreover, there is no reason to be lim- ited to commitments: indeed, we have begun work on bringing in psychological aspects such as goals and emotions, suitably elicited from subjects, as a basis for creating commitments and judging commitment outcomes and overall trust.

5 Acknowledgment
This work is supported by the Army Research Laboratory in its Network Sciences Collaborative Technology Alliance (NS- CTA) under Cooperative Agreement Number W911NF-09-2- 0053.

REFERENCES

Figure 1. MAE for predicting trust values.