Lecture 6: Gauss Elimination

The objective is to solve for \(n \) unknowns given \(n \) linear equations. In terms of matrices, find the \(nx1 \) column vector \(x \) so that \(Ax = d \) where \(A \) is \(nxn \) and \(d \) is \(nx1 \). We will do this using the method called Gauss elimination, which requires about \(n^2 \) units of memory and about \(n^3/3 \) arithmetic operations. So, if \(n \) is not too large, this method is very useful; otherwise, one must go to other more specialized methods. We begin by considering several special matrices \(A \).

\(A \) is a Diagonal Matrix.

Let \(n = 3 \).

\[
\begin{bmatrix}
 a_{11} & 0 & 0 \\
 a_{22} & a_{23} & 0 \\
 a_{33} & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
\end{bmatrix}
=
\begin{bmatrix}
 d_1 \\
 d_2 \\
 d_3 \\
\end{bmatrix}
\]

Or,

\(a_{11}x_1 = d_1 \)
\(a_{22}x_2 = d_2 \)
\(a_{33}x_3 = d_3 \)

So, if each \(a_{ii} \neq 0 \), then \(x_i = d_i / a_{ii} \).

\(A \) is an Upper Triangular Matrix.

Let \(n = 3 \).

\[
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{22} & a_{23} & 0 \\
 a_{33} & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
\end{bmatrix}
=
\begin{bmatrix}
 d_1 \\
 d_2 \\
 d_3 \\
\end{bmatrix}
\]

Or,

\(a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = d_1 \)
\(a_{22}x_2 + a_{23}x_3 = d_2 \)
\(a_{33}x_3 = d_3 \)
So, if \(a_{33} \neq 0\), then
\[x_3 = \frac{d_3}{a_{33}}.\]

Solve the middle equation, if \(a_{22} \neq 0\),
\[a_{22}x_2 = d_2 - a_{23}x_3,\]
\[x_2 = \frac{(d_2 - a_{23}x_3)}{a_{22}}.\]

Solve the first equation, if \(a_{11} \neq 0\),
\[a_{11}x_1 = d_1 - a_{12}x_2 - a_{13}x_3,\]
\[x_1 = \frac{(d_1 - a_{12}x_2 - a_{13}x_3)}{a_{11}}.\]

Proposition 3. Let \(A\) be a \(n \times n\) upper or lower triangular matrix,
If each diagonal component is non-zero, then \(Ax = d\) has a solution.

Consider the following system with three unknowns and three equations, whose coefficient matrix is not upper or lower triangular.
\[
\begin{align*}
2x_1 + 6x_2 + 8x_3 &= 16 \\
4x_1 + 15x_2 + 19x_3 &= 38 \\
2x_1 + 0x_2 + 3x_3 &= 6
\end{align*}
\]

Or, \(Ax = d\)
\[
\begin{bmatrix}
2 & 6 & 8 \\
4 & 15 & 19 \\
2 & 0 & 3
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
=
\begin{bmatrix}
16 \\
38 \\
6
\end{bmatrix}
\]

Or, as a \(3 \times 4\) augmented matrix
\[
[A \ d] =
\begin{bmatrix}
2 & 6 & 8 & 16 \\
4 & 15 & 19 & 38 \\
2 & 0 & 3 & 6
\end{bmatrix}
\]

We will try to transform this into an equivalent problem that has an upper triangular coefficient matrix, which may be solved by a backward substitution. Often this can be done by a combination of row (or equation) operations:

(i). interchange rows (or equations)

(ii). multiply rows (or equations) by a suitable constant and

(iii). add or subtract rows (or equations).
Row Operations on the Augmented Matrix:

We will try to transform the augmented matrix to an upper triangular matrix by using row operations to make the left most column 0 below row 1.

row 2 – 2(row 1) or multiply \([A \ d]\) by \(E_{21}(-2)\) and then

\[
E_{31}(-1)E_{21}(-2)[A \ d] = \begin{bmatrix}
2 & 6 & 8 & 16 \\
0 & 3 & 3 & 6 \\
0 & -6 & -5 & -10
\end{bmatrix}.
\]

Next, we must use row 2 to transform the –6 to 0.

row 3 + 2(row 2) or multiply \(E_{31}(-1)\) \(E_{21}(-2)\) \([A \ d]\) by \(E_{32}(2)\) to get

\[
E_{32}(2)E_{31}(-1)E_{21}(-2)[A \ d] = \begin{bmatrix}
2 & 6 & 8 & 16 \\
0 & 3 & 3 & 6 \\
0 & 0 & 1 & 2
\end{bmatrix}.
\]

Backward Substitution on the Transformed Augmented Matrix:

This is equivalent to the upper triangular system, which can be solved by backward substitution.

\[
\begin{bmatrix}
2 & 6 & 8 & x_1 \\
0 & 3 & 3 & x_2 \\
0 & 0 & 1 & x_3
\end{bmatrix} = \begin{bmatrix}
16 \\
6 \\
2
\end{bmatrix}.
\]

Solve for \(x_1\), \(1x_3 = 2\) *so that* \(x_3 = 2\).

Solve for \(x_2\), \(3x_2 + 3x_3 = 6\) *so that* \(x_2 = 0\).

Solve for \(x_1\), \(2x_1 + 6x_2 + 8x_3 = 16\) *so that* \(x_1 = 0\).

Gauss Elimination Method. Consider \(Ax = d\).

Step 1: Use row operations on the augmented matrix to transform \(Ax = d\) to an upper triangular problem.

Step 2: Use backward substitution to solve the upper triangular problem.

See the Matlab demo gauss_el.m for additional examples. There are a number of very good computer implementations of the Gauss elimination method. In Matlab the simple command \(A\backslash d\) can be used to compute the solution for most problems \(Ax = d\).
Application to the Two-loop Circuit.

In lecture 4 we formulated the algebraic problem for the two-loop circuit problem:

\[
\begin{bmatrix}
1 & -1 & 1 \\
R_1 & 0 & -R_3 \\
0 & -R_2 & -R_3
\end{bmatrix}
\begin{bmatrix}
i_1 \\
i_2 \\
i_3
\end{bmatrix} =
\begin{bmatrix}
0 \\
E_1 \\
E_2
\end{bmatrix}.
\]

Let \(R_1 = 1, R_2 = 2, R_3 = 3, E_1 = 10 \) and \(E_2 = 20 \).

The augmented matrix is

\[
[A \ d] =
\begin{bmatrix}
1 & -1 & 1 & 0 \\
0 & 1 & -3 & 10 \\
0 & -2 & -3 & 20
\end{bmatrix}.
\]

Step 1: Use row operations.

row 2 – row 1 or multiply by \(E_{12}(-1) \) to get

\[
E_{21}(-1)[A \ d] =
\begin{bmatrix}
1 & -1 & 1 & 0 \\
0 & 1 & -4 & 10 \\
0 & -2 & -3 & 20
\end{bmatrix}.
\]

row 3 + 2(row2) or multiply by \(E_{32}(2) \) to get

\[
E_{32}(2)E_{21}(-1)[A \ d] =
\begin{bmatrix}
1 & -1 & 1 & 0 \\
0 & 1 & -4 & 10 \\
0 & 0 & -11 & 40
\end{bmatrix}.
\]

Step 2: Use backward substitution.

\[
\begin{bmatrix}
1 & -1 & 1 \\
0 & 1 & -4 \\
0 & 0 & -11
\end{bmatrix}
\begin{bmatrix}
i_1 \\
i_2 \\
i_3
\end{bmatrix} =
\begin{bmatrix}
0 \\
10 \\
40
\end{bmatrix}.
\]

Solve for \(i_3, -11x_3 = 20 \) so that \(i_3 = -40/11 \).

Solve for \(i_2, li_2 - 4i_3 = 10 \) so that \(i_2 = -50/11 \).

Solve for \(i_1, li_1 - li_2 + i_3 = 0 \) so that \(i_1 = -10/11 \).

Homework.

1. Use Gauss elimination to solve \(Ax = d \) when

\[
A =
\begin{bmatrix}
1 & 3 & 5 \\
0 & 2 & 1 \\
2 & 2 & 0
\end{bmatrix}
\text{ and } d =
\begin{bmatrix}
1 \\
2 \\
3
\end{bmatrix}.
\]

2. Prove Proposition 3 when \(A \) is lower triangular.