Lecture 28

Variational Inequalities: porous flow

(Lecture notes taken by ????? and ???)

- Classical model for porous flow.
- Weak formulation.
- Baiocchi transformation.
- FEM discrete model.

\[
\begin{align*}
\text{(8.4) } & \quad \alpha = n \frac{\varepsilon}{\eta} \\
\text{(7.4) } & \quad \beta = n \\
\text{(9.4) } & \quad \gamma = n \\
\text{(5.4) } & \quad \delta = n \\
\end{align*}
\]

where \(n \) is the number of particles.

\[
\alpha = n \frac{\varepsilon}{\eta} + (\gamma + \delta - \eta)
\]

Classical Formulation of Fluid Flow in a porous medium

There are two fundamental approaches to the formulation of fluid flow in a porous medium: the Darcy's law and the Forchheimer equation. The Darcy's law is a linear relationship between the pressure drop and the flow rate, while the Forchheimer equation includes a quadratic term that accounts for the inertial effects.

\[
\text{(8.4) } \quad \alpha = n \frac{\varepsilon}{\eta} \\
\text{(7.4) } \quad \beta = n \\
\text{(9.4) } \quad \gamma = n \\
\text{(5.4) } \quad \delta = n
\]

\[
\text{Classical Formulation of the Water-Film Flow in a porous medium}
\]

where \(\eta \) is the water film thickness, \(\varepsilon \) is the porosity, \(\alpha \) is the Darcy's law coefficient, and \(\beta \) is the Forchheimer coefficient.
\[\Delta_{J} \cap \Delta_{J} \cup \{0\} = (\Delta_{J})^{\infty} \quad (8) \]
\[\Delta_{J} \cup \Delta_{J} \cup \{0\} = (\Delta_{J})^{\infty} \quad (9) \]
\[\Delta_{J} \cup \{0\} = (\Delta_{J})^{\infty} \quad (10) \]
\[\{0\} = (\Delta_{J})^{\infty} \quad (11) \]

\[\text{Proposition 9.4.1:} \quad \text{Let } \varphi \text{ be a weak solution of } (1.4.6) \text{ on } \Omega \times (0, T) \text{ and } \varphi \neq 0. \]

\[\text{The weak solution } \varphi \text{ is unique in } \Omega \times (0, T). \]

Theorem: (1.4.6) and (1.3.6)

\[\text{Proposition 9.4.1:} \quad \text{Let } \varphi \text{ be a weak solution of } (1.4.6) \text{ on } \Omega \times (0, T) \text{ and } \varphi \neq 0. \]

\[\sum_{i=1}^{n} \int_{\Omega} \varphi_{i} \varphi_{i} \cdot \nabla \varphi_{i} \text{ d}x = \int_{\Omega} \varphi \cdot \nabla \varphi \text{ d}x \]

\[\text{Proposition 9.4.1:} \quad \text{Let } \varphi \text{ be a weak solution of } (1.4.6) \text{ on } \Omega \times (0, T) \text{ and } \varphi \neq 0. \]
\[(x) \leq 1 \]
\[(x) < 1 \]
\[\int \psi(x) \, dx = 1 \]

The function \(\psi(x) \) is defined as \(\psi(x) = \exp(-x^2) \) for \(x \geq 0 \) and \(\psi(x) = 0 \) for \(x < 0 \).

Problem:

Let \(g(x) = xe^{-x^2} \) for \(x \geq 0 \) and \(g(x) = 0 \) for \(x < 0 \). Find the critical points of \(g(x) \).

Solution:

The critical points of \(g(x) \) occur where \(g'(x) = 0 \). We have

\[g'(x) = e^{-x^2} - 2xe^{-x^2} = (1 - 2x)e^{-x^2} \]

Setting \(g'(x) = 0 \), we get \(x = 0.5 \). Therefore, the critical point is \(x = 0.5 \).

Conclusion:

The critical point of \(g(x) \) is \(x = 0.5 \).