Integrating Computation into Math/Science Education

By

Robert E. White
Department of Mathematics
NCSU
white@math.ncsu.edu
http://www4.ncsu.edu/~white
USE OF COMPUTATION TOOLS IS REQUIRED

By Hand:

\[
\int (ax + b)e^{2x} \, dx = a \int xe^{2x} \, dx + b \int e^{2x} \, dx
\]

\[
= a[xe^{2x}/2 - \int 1/2e^{2x} \, dx] + b \int e^{2x}/2(2\, dx)
\]

\[
= a[x/2e^{2x} - (1/2)^2 e^{2x}] + b/2e^{2x}
\]

\[
= e^{2x}(ax/2 - a/4 + b/2)
\]

Check:

\[
\frac{d}{dx} e^{2x}(ax/2 - a/4 + b/2) = e^{2x}2(ax/2 - a/4 + b/2)
\]

\[
+ e^{2x}(a/2 - 0 + 0)
\]

\[
= (ax + b)e^{2x}
\]

By Symbolic Computation:

```matlab
>> syms a b x
>> int((a*x+b)*exp(2*x),x)
ans = 1/4*a*(2*exp(2*x)*x - exp(2*x)) + 1/2*exp(2*x)*b
```
Important Issues:

- **Level** of computer use

 1. Limited in class demonstrations

 2. In class demonstration with out of class computer homework

 3. In class demonstrations and student in class computation
• Correctness of computations

1. students may be naïve or too trusting

2. easy to look for the quick answer

3. confirmation or reasonableness of “solution”

 simple case by hand
 duplicate with computer
 enhanced problem

4. compare with physical observations
 (empirical)

5. mathematical analysis
 (deductive)
• **Costs** of computations

1. hardware
 low end is about $500

2. software
 low end is about $40 for Redhat:
 older software such as open office, octav,
 variety of programming languages,……..

3. time sinks

 student use and syntax errors
 eats up traditional classroom time
 faculty preparation and setup
Where does computation fit into the overall goal of education?

From party animal

To degree hostage

To life time learner
Six Computational Lessons

• Application driven

• Includes traditional mathematics

• Computer implementation

• Vary parameters computations

• Two lessons use spreadsheets

• Two lessons use Matlab ode45 solver

• Two use Matlab programming language
Credit Card Debt

Model:

\[u^{k+1} = u^k + \text{change in month } k \]
\[= u^k + r/12 \cdot u^k - P + C \]

Math:

\[u^{k+1} = a \cdot u^k + b \]
\[= a (a \cdot u^{k-1} + b) + b \]
\[= a^2 \cdot u^{k-1} + (a + 1) \cdot b \]
\[\vdots \]
\[= a^{k+1} \cdot u^0 + (a^k + \cdots + 1) \cdot b \]
\[= a^{k+1} \cdot u^0 + (1 - a^{k+1})/(1-a) \cdot b \]

So, if \(|a| < 1 \), then \(u^{k+1} \) converges to \(b/(1-a) \). This generalizes to vector equations.

Computation:

Could use spreadsheets or a programming language with loops.
Columns B, C and D are the standard plug and chug questions and column D uses

\[=D4 + 0.12/12 \times D4 - 100. \]

Column F uses random charges between 0 and 20

\[=F4 + 0.12/12 \times F4 - 100 + (20 \times \text{RAND}()). \]
Maximum Profit in Two Markets

Let \(x \) = sales in market one and
\(y \) = sales in market two.

Profit = Revenue from market one
+ Revenue from market two
- Cost

\[
= (97 - \frac{x}{10})x \\
+ (83 - \frac{y}{20})y \\
- (20,000 + 3(x + y))
\]

\[
= 94x - .10 x^2 + 80y - .05 y^2 - 20,000.
\]

Methods of Solution:

Complete the square

Graph the profit function

Use partial derivatives

Use solver in Excel
Formula in cell a3 is

\[(97-A1/10)\times A1+(83-A2/20)\times A2-(20000+3\times (A1+A2))\]

10
10
-18275

Solver is prompted to find the maximum and to vary cells a1:12

470.0001
799.9998
34090

One can impose inequality and equality constraints.
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-18275</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Solver Parameters

- Set Target Cell: B5
- Equal To: Min
- Changing Cells: A1, A3
- Subject to the Constraints:
 - Add
 - Change

Close

Point
Population with Harvesting

\[y' = c(M-y)y - h(t) \]

Methods of Solution:

Direction fields

Separation of variables when \(h(t) \) is constant

Euler methods

Variable step Runge-Kutta 45

Use Matlab ode45
Matlab m-file ypfishh.m:

```matlab
function ypfishh = ypfishh(t,y)
  ypfishh(1) = (.01)*y(1)*(100 -y(1))-4.0;
  % 4.*(1+sin(pi*t)
```

Matlab m-file fishh.m:

```matlab
clear;
yo = [10];
to = 0;
tf = 12;
[t y] = ode45('ypfishh',[to tf],yo);
plot(t,y)
```
In the constant harvesting case there is the possibility of over harvesting. Perhaps, this is also true for the variable harvesting. Try

\[h(t) = 8(1 + \sin(\pi t)). \]

Use a smaller final time, \(t_f \).
LRC Tuning

\[LQ'' + RQ' + \left(\frac{1}{C}\right)Q = V(t) \]

Special case is \(V(t) = V_0 \cos(\omega t) \) whose solution is

\[I(t) = C_1 r_1 \exp(r_1 t) + C_2 r_2 \exp(r_2 t) \]

\[+ E \left(R^2 + \left(\frac{1}{(C \omega)} - (L \omega)^2\right)^2 \right)^{-1/2} \cos(\omega t + \phi). \]

The homogeneous solution decays to zero.

The particular solutions will be a maximum if

\[E \left(R^2 + \left(\frac{1}{(C \omega)} - (L \omega)^2\right)^2 \right)^{1/2} \text{ is a minimum.} \]

So, adjust \(C \) and \(L \) so that

\[\frac{1}{(C \omega)} - (L \omega) = 0. \]
Convert the second order ODE to a first order linear system and use ode45 to approximate the solution

\[y_1 = Q = \text{charge and } y_2 = Q' = I = \text{current.} \]

Matlab file yptune.m

```matlab
function yptune = yptune(t,y)
    yptune(1) = y(2);
    yptune(2) = (100*cos(710.*t)-
                400*y(2)-10^6)*y(1))/2.0;
    yptune = [yptune(1) yptune(2)]';
```

Matlab file tune.m

```matlab
%your name, your student number, lesson number
clear;
t0 = 0;
tf = .3;
y0 = [0 0];
[t y] = ode45('yptune', [t0 tf],y0);
plot(t,y(:,2))
```
The output is consistent with the analytic solution

Now replace $V(t)$ with

$$V(t) = 100 \sin(63t) \sin(710t).$$

Vary L and C to see the amplitude decrease (not tuned).
Pollutant in a Steam

Let \(u_i^k \approx u(i\Delta x, k\Delta t) \) = concentration of pollutant.

Assume the vel = velocity of the stream is positive.

Discrete Model:

\[
(\Delta x \ A) \ u_i^{k+1} = (\Delta x \ A) \ u_i^k + (\Delta t \ \text{vel} \ A) \ u_{i-1}^k \\
- (\Delta t \ \text{vel} \ A) \ u_i^k - (\Delta x \ A) \ \Delta t \ \text{dec} \ u_i^k
\]

Matrix form is

\[
u^{k+1} = A u^k + b \in \mathbb{R}^n
\]

Continuous Model:

\[
u_t = -\text{vel} \ u_x - \text{dec} \ u \ \text{with} \ u(x,0) \ \text{and} \ u(0,t) \ \text{given}
\]
Matlab m-file flow1d.m

% This a model for the concentration of a pollutant.
% Assume the stream has constant velocity.
clear;
L = 1.0; % length of the stream
T = 20.; % duration of time
K = 200; % number of time steps
dt = T/K;
n = 10.; % number of space steps
dx = L/n;
vel = .2; % velocity of the stream
decay = .1; % decay rate of the pollutant
for i = 1:n+1 % initial concentration
 x(i) =(i-1)*dx;
 u(i,1) =(i<=(n/2+1))*sin(pi*x(i)*2)+(i>(n/2+1))*0;
end
for k=1:K+1 % upstream concentration
 time(k) = (k-1)*dt;
 u(1,k) = -sin(pi*vel*0)+.2;
end
% % Execute the finite difference algorithm.
% %
% for k=1:K % time loop
% for i=2:n+1 % space loop
% u(i,k+1) =(1 - vel*dt/dx -decay*dt)*u(i,k) +
% vel*dt/dx*u(i-1,k);
% end
% end
mesh(x,time,u')
% contour(x,time,u')
% plot(x,u(:,1),x,u(:,51),x,u(:,101),x,u(:,151))
$\text{Vel} = 0.2$ and stable computation
Vel = 1.3 is unstable computation
(need smaller time step)
\text{Vel} = .2 \text{ and } u(0,t) = (1+\sin(\pi t)) \cdot .2
One needs to systematically vary the physical and numerical parameters of the model.

One should use alternative graphical output such as

\begin{verbatim}
contour(x, time, u')
\end{verbatim}

\begin{verbatim}
plot(x, u(:,1), x, u(:,51), x, u(:,101), x, u(:,151))
\end{verbatim}
This can be extended to three dimensions where the Matlab command `slice` can be used to depict the concentration in space and time.
Concluding Remarks

- In class demonstrations by the instructor in any math/science course can be done without too much effort.

- The demonstrations can be prepared in advance and put on transparencies.

- If computation is not a regular topic in the syllabus, then extra credit computation problems can be assigned.

- The models should be used to investigate the dependence on various parameters. This often generates sequences of computations and not just one or two computations.

- There should be assessments and extension of the models. One should attempt to develop learning based on curiosity and computational experimentation.

- Finally, a short advertisement …..