COMPUTING ADMISSIBLE SEQUENCES FOR TWISTED INVOLUTIONS IN WYEL GROUPS

R. HAAS AND A.G. HELMINCK

Abstract. Let \((W, \Sigma)\) be a finite Coxeter system, and \(\theta\) an involution such that \(\theta(\Delta) = \Delta\), where \(\Delta\) is a basis for the root system \(\Phi\) associated with \(W\). We show that the set of \(\theta\)-twisted involutions in \(W\), \(I_\theta = \{w \in W \mid \theta(w) = w^{-1}\}\) is in one to one correspondence with the set of regular involutions \(I_{Id}\). The elements of \(I_\theta\) are characterized by sequences in \(\Sigma\) which induce an ordering called the Bruhat Lattice. In particular, for \(\Phi\) irreducible, the ascending Bruhat Lattice of \(I_\theta\), for nontrivial \(\theta\) is identical to the descending Bruhat Lattice of \(I_{Id}\).

1. Introduction

Let \(W\) be a Weyl group generated by a set of reflections \(\Sigma\). We will assume that \(\Sigma\) comes from a basis \(\Delta\) for the root system associated with \(W\), i.e., \((W, \Sigma)\) is a Coxeter System. If \(\theta\) is an involution of \(W\) then the set \(I_\theta = \{w \in W \mid \theta(w) = w^{-1}\}\) is called the set of \(\theta\)-twisted involutions in \(W\). This set is important in the study of orbits of minimal parabolic \(k\)-subgroups acting on symmetric \(k\)-varieties. The geometry of these orbits and their closures induce a lattice structure on the set \(I_\theta\). Understanding this lattice structure is key to understanding the structure of the orbits. This connection will be described in section 2. There we will also show that it is sufficient to consider only those involutions \(\theta\) such that \(\theta(\Delta) = \Delta\), and hence \(\theta(\Sigma) = \Sigma\). Thus we restrict our attention to involutions \(\theta\) such that \(\theta(\Delta) = \Delta\). The results of this paper imply a simple algorithm for computing the lattice and elements of \(I_\theta\). In particular, for any \(\theta\), the lattice of \(I_\theta\), can be quickly derived from the lattice of \(I_{Id}\), where \(Id\) is the identity automorphism of \(W\). Notice that \(I_{Id} = \{w \in W \mid w^2 = e\}\).

The Weyl Group \(W\) acts on the set \(I_\theta\) by twisted conjugation which is defined as \(w*a = wa\theta(w)^{-1}\) where \(w \in W\) and \(a \in I_\theta\). If \(s \in \Sigma\) and \(a \in I_\theta\) then define \(s*a = sa\) (group multiplication) if \(s*a = a\) and \(s*a = s*a\) otherwise. A sequence \(s = (s_1, \ldots, s_k)\) in \(\Sigma\) induces a sequence in \(I_\theta\) defined by induction as follows: \(a(s) = (a_0, a_1, \ldots, a_k)\), where \(a_0 = e\) and \(a_i = s_i \circ a_{i-1} = s_i \circ \cdots \circ s_1 \circ e\) for \(i \in [1, k]\). It will be important to keep track of for which elements in \(s\) the \(*\) operation is used. Thus for \(s \in \Sigma\), \(a \in I_\theta\) we will use the notation \(\overline{s}\) if \(s \circ a_{i-1} = s_i \ast a_{i-1}\). Define \(\overline{\Sigma} := \{\overline{s} \mid s \in \Sigma\}\) and let \(r_s = (r_1, r_2, \ldots, r_k)\) be the sequence in \(\Sigma \cup \overline{\Sigma}\) defined by \(r_i = \overline{s}\) if \(s_i \circ a_{i-1} = s_i \ast a_{i-1}\) in \(a(s)\) and \(r_i = s_i\) otherwise. The sequence \(r_s\) will be called an ascending sequence for \(I_\theta\) and the sequence \(s\) will be called an underlying ascending sequences for \(I_\theta\).

Recall \(l(w)\), the length of \(w\) with respect to \(\Sigma\), is the number of elements in a minimal expression of \(w\) as a product of basis elements. Note that this is not generally equal to the number of elements in \(\Sigma \cup \overline{\Sigma}\) in a sequence determining \(w\). The sequence \(r_s\) is called an admissible
descending sequence for θ_g if $0 = l(a_0) < l(a_1) < \ldots < l(a_k)$. We will often refer to these as simply admissible sequences when the rest is clear from context. Richardson and Springer [RS90] showed that every element in θ_g can be represented by admissible sequences. An element may be represented by several admissible sequences, and determining all of these is crucial to determine the orbit closures described in section 2. In this paper we show the following.

Theorem 1.1. Let (W, Σ) a Coxeter system, and θ an involution such that $\theta(\Delta) = \Delta$. The sequence $r = (r_1, r_2, \ldots, r_n)$ in $\Sigma \cup \Sigma$ is a maximal admissible ascending sequence for θ_g if and only if $\hat{r} = (r_n, \ldots, r_1)$ is a maximal admissible ascending sequence for θ_Id. Where in the sequence r, α denotes the operation $s_\alpha \theta(s)$, while in the sequence \hat{r}, α denotes the operation $s_\alpha s_\alpha.$

The full power of this theorem comes from the fact that every partial sequence of a maximal admissible ascending sequence will also be an admissible ascending sequence, and indeed, all admissible sequences are partial sequences of maximal ones. Note that the \ast and \circ action on θ_g as used in the sequences depend on the involution, and are therefore different for the two sequences in the theorem. Computing the sequences for θ_Id will be significantly easier than doing it directly in θ_g. To show that there is a one-to-one correspondence between sequences we will need some additional definitions.

Recall that W has a unique element of maximum length with respect to Σ, denoted here by w_0. We will show that $w_0 \in \theta_\text{g}$, for all θ and if $s = (s_1, \ldots, s_\mu)$ is a maximal admissible sequence then $w_0 = s_\mu \circ \cdot \cdot \cdot \circ s_1 \circ e$. It will be convenient to define partial sequences descending from w_0 as follows. If $t = (t_1, \ldots, t_k)$ is a sequence in Σ, then define a sequence (b_0, b_1, \ldots, b_k) in θ_g by induction as follows. Let $b_0 = w_0$ and for $i \in \{1, k\}$ let $b_i = t_i \circ b_{i-1}$. As before, let $r_\Sigma = (r_1, r_2, \ldots, r_k)$ be the sequence in $\Sigma \cup \Sigma$ defined by $r_i = r_i$ if $t_i \circ b_{i-1} = t_i \ast a_{i-1}$ and $r_i = t_i$ otherwise. The sequence r_Σ will be called a descending sequence for θ_g. Admissible descending sequences in θ_g are those in which the lengths strictly decrease, i.e., if $l(w_0) = l(b_0) > l(b_1) > \ldots > l(b_k)$.

We use xy to denote regular group multiplication of x and y, as well, it will be convenient to denote the action $s \ast x = sxx$ by $\hat{s}x$. For a sequence $r = (r_1, r_2, \ldots, r_k)$ and $w \in W$, define $r \cdot w := r_k \cdot \cdot \cdot r_2 r_1 w$.

Theorem 1.2. Let (W, Σ) a Coxeter system, and θ an involution such that $\theta(\Delta) = \Delta$. Denote by \cdot the action of a sequence $\alpha \in \Sigma \cup \Sigma$ on θ_g, and \cdot' the action of α on θ_Id.

1. A sequence $r = (r_1, r_2, \ldots, r_n)$ in $\Sigma \cup \Sigma$ is an admissible ascending sequence for θ_g if and only if it is an admissible descending sequence for θ_Id.
2. A sequence $r = (r_1, r_2, \ldots, r_n)$ in $\Sigma \cup \Sigma$ is an admissible descending sequence for θ_g if and only if it is also an admissible ascending sequence for θ_Id.
3. Let q and r be two sequences in $\Sigma \cup \Sigma$. They are two admissible ascending sequences for θ_g and $q \cdot e = r \cdot e$ in θ_g if and only if they are two admissible descending sequences for θ_Id.

The sequences induce a lattice order on the elements of θ_g. If $a, b \in \theta_\text{g}$ then define $a > b$ if there exists an admissible ascending sequence (r_1, \ldots, r_n) and $j < n$ such that $a = r_n \cdot \cdot \cdot r_j e$ and $b = r_{j+1} \cdot \cdot \cdot r_2 r_1 e$. This is a combinatorial description of the Bruhat order on θ_g, see section 2. Following the proofs of the main results we give some additional results about the structure of the the Bruhat Lattice and its sequences in section 5.
2. Context

In this section we describe how twisted involutions and their admissible sequences help to characterize orbits of a minimal parabolic k-subgroup acting on a symmetric k-variety. We start by discussing these orbits and their applications.

Throughout this section let G be a connected reductive algebraic group defined over a field k of characteristic not 2, θ an involution of G defined over k (i.e. of order two) and $H = G_\theta = \{ g \in G \mid \theta(g) = g \}$ the set of fixed points of θ. Let G_k, H_k denote the sets of k-rational points of G, H. The orbits of a minimal parabolic k-subgroup P acting on the symmetric k-variety G_k/H_k play a fundamental role in the study of representations associated with these symmetric k-varieties. These orbits were studied for many fields and can be characterized in several equivalent ways. They can be characterized as the P_k-orbits acting on the symmetric k-variety G_k/H_k by θ-twisted conjugation (i.e. if $x, g \in G_k$ then define $g * x := gx\theta(g)^{-1}$), or as the number of H_k-orbits acting on the flag variety G_k/P_k by conjugation or also as the set $P_k \setminus G_k/H_k$ of (P_k, H_k)-double cosets in G_k. The last is the same as the set of $P_k \times H_k$-orbits on G_k. For k algebraically closed these orbits were characterized by Springer [Spr85], for $k = \mathbb{R}$ characterizations were given by Matsuki [Mat79] and Rossmann [Ros79] and for general fields these orbits were characterized by Helminck and Wang [HW93]. For general fields one can first consider the set of (P, H)-double cosets in G. Then the (P_k, H_k)-double cosets in G_k can be characterized by the (P, H)-double cosets in G defined over k plus an additional invariant describing the decomposition of a (P, H)-double coset into (P_k, H_k)-double cosets.

The following result gives a characterization of the (P, H)-double cosets in G. Let $A \subset P$ be a θ-stable maximal k-split torus of G (which exists by [HW93]), N the normalizer of A in G_k, Z the centralizer of A in G_k, let $W = N/Z$ be the Weyl group of A in G_k, and let $I_\theta = \{ w \in W \mid \theta(w) = w^{-1} \}$ be the set of twisted involutions in W.

Theorem 2.1. The (P, H)-double cosets in G defined over k can be characterized by the pairs (Θ, w), where Θ is a closed orbit and $w \in I_\theta \subset W$.

Proof. For k algebraically closed and P a Borel subgroup of G this result follows by combining [Spr85] and [RS90]. For k not algebraically closed and P a minimal parabolic k-subgroup of G the result follows by combining the characterization of the orbits in [HW93], [Hel00] and [Hel04].

Remark 2.2. It follows from this result that to classify the $P \times H$ orbits on G one needs to determine both the closed orbits and the twisted involutions that occur. In many cases there is a unique closed orbit and then the $P \times H$ orbits on G are completely characterized by the twisted involutions in W. In this paper we prove a number of results about these twisted involutions in the Weyl group.

2.3. Orbit closures. These twisted involutions also play an essential role in the study of the orbit closures. The closure of a $P \times H$ orbit on G decomposes as the union of other $P \times H$ orbits on G and these orbit closures are of fundamental importance in the study of Harish-Chandra modules, see [Vog83]. There is a natural order \succ on the set of $P \times H$ orbits on G, called the Bruhat order, which is defined as follows. If Θ_1, Θ_2 are orbits, then $\Theta_1 \succ \Theta_2$ if and only if Θ_2 is contained in the closure of the orbit Θ_1. This order on the orbits induces an order on the related set of twisted involutions, which we call the Bruhat order on I_θ. In [RS90] Richardson and Springer gave a
combinatorial description of these Bruhat orders in terms of sequences of reflections in simple roots, which is exactly the sequence order as we defined above.

Remark 2.4. The set \(I_\Theta \) depends on the choice of the parabolic \(k \)-subgroup. For the combinatorial description of the Bruhat order as in [RS90] one needs to take a conjugate of the minimal parabolic \(k \)-subgroup \(P \), which is \(\Theta \)-stable. For algebraically closed fields Steinberg [Ste68] proved the existence of a \(\Theta \)-stable Borel subgroup. For minimal parabolic \(k \)-subgroups it was shown [Hel04,] that there exists a \(\Theta \)-stable conjugate. This condition can also be expressed in terms of the underlying root system. Let \(\Phi \) denote the set of roots of \(A \) in \(G \) and \(\Delta \) the basis of \(\Phi \) induced by \(P \). Then we have the following:

Lemma 2.5. Let \(P \), \(A \), \(\Phi \), \(\Delta \), \(\Theta \), etc. be as above. Then \(P \) is \(\Theta \)-stable if and only if \(\Theta(\Delta) = \Delta \).

In the remainder of this paper we assume that \(P \) is \(\Theta \)-stable.

3. Example

We consider as an example \(S_4 \) whose corresponding Dynkin diagram is of type \(A_3 \). Throughout this example, \(\ast \), \(\circ \) and \(\cdot \) will refer to actions of \(W \) on \(I_{\text{Id}} \). Let the generators of \(S_4 \) be \(\Sigma = \{s_1 = (12), s_2 = (23), s_3 = (34)\} \). We compute the maximal ascending sequences for \(I_{\text{Id}} \) directly. We make frequent use of the facts that \(s_1s_3 = s_3s_1, s_1s_2s_1 = s_2s_1s_2 \) and \(s_3s_2s_3 = s_2s_3s_2 \). As well, note that the same element will not occur twice in a row in an underlying admissible sequence. Let the size of a sequence denote the number of elements in it.

Since \(s_1 \ast e = s_2 \ast e = s_3 \ast e = e \), the admissible ascending sequences of size 1 are \(s_1 \), \(s_2 \) and \(s_3 \). There will be 6 admissible ascending sequences of size 2 representing 3 different elements. Since
All possible Dynkin diagrams consist of a set of connected components each of which corresponds to an irreducible root system. From [Hel88] it follows that an involution either fixes a connected component of the Dynkin diagram or exchanges two identical copies. In the case where involution exchanges two connected components, the Weyl group for these two components is $W = W_1 \times W_1$, where W_1 is the Weyl group of the irreducible component. Also, $\Sigma = \Sigma_1 \times \Sigma_1$, where Σ_1 is the set of generators for W_1. Further, the set $I_{\theta} = \{ (w, w^{-1}) \mid w \in W_1 \}$ and the Bruhat order on I_{θ} is the usual Bruhat order on W_1. In particular, the admissible sequence for an element $(w, w^{-1}) \in I_{\theta}$ will be a sequence of the form $(r_1, \ldots, r_n) \in \Sigma \cup \overset{\sim}{\Sigma}$, such that $r_i \in \Sigma$ for all i. Moreover, each r_i is of the form $r_i = (s_j, e)$, for some $s_j \in \Sigma_1$. Thus, the presentations of

(i) $s_2 \ast s_1 = s_2 s_1 s_2 = s_1 s_2 s_1 = s_1 \ast s_2$;
(ii) $s_3 \ast s_2 = s_3 s_2 s_3$ while $s_3 \ast s_1 = s_3 s_1 s_3 = s_1$ so $s_3 \circ s_1 = s_1 s_3 = s_3 \circ s_1$ and the admissible ascending sequences are $\bar{s}_2 s_1 = s_1 s_2$; $s_3 s_1 = s_1 s_3$; and $\bar{s}_3 s_3 = \bar{s}_3 s_2$.

Since $s_3 \ast \bar{s}_2 s_1 = s_3 s_2 s_1 s_2 s_3$ we get the admissible ascending sequence $\bar{s}_3 \bar{s}_2 s_1$. Since $s_2 \ast \bar{s}_3 s_1 = s_2 s_3 s_1 s_2$, we get the admissible ascending sequence $\bar{s}_2 s_3 s_1$. The only sequence of size 3 we must still consider is $s_1 \ast \bar{s}_2 s_3$. Noticing that $s_3 s_2 s_1 s_2 s_3 = s_3 s_1 s_2 s_3$ shows that the admissible ascending sequence $s_1 \bar{s}_2 s_3 = \bar{s}_3 s_2 s_1$. There are 3 cases to consider for possible sequences of size 4.

(i) $s_2 \ast \bar{s}_3 \bar{s}_2 s_1 = s_2 s_3 s_2 s_1 s_2 s_3 = s_3 s_2 s_1 s_2 s_3 = s_1 s_2 s_1 s_2 s_3$ so the admissible ascending sequence is $s_2 \bar{s}_3 \bar{s}_2 s_1$.

(ii) $s_1 \ast \bar{s}_2 s_3 s_1 = s_1 s_2 s_3 s_1 s_2 s_1$ giving the admissible ascending sequence $s_1 \bar{s}_2 s_3 s_1$.

(iii) $s_3 \ast \bar{s}_2 s_3 s_1 = s_3 s_2 s_3 s_1 s_2 s_3$ giving the admissible ascending sequence $s_3 \bar{s}_2 s_3 s_1$.

All three are actually equal to the same element, as can be see $s_3 s_2 s_3 s_1 s_2 s_3 = s_2 s_3 s_2 s_1 s_2 s_3 = s_2 s_3 s_1 s_2 s_1 s_3 = s_2 s_1 s_2 s_3 s_1 s_3 = s_1 s_2 s_1 s_3 s_2 s_1 = s_1 s_2 s_3 s_1 s_2 s_1$. There can be no bigger sequences in I_{1d} since these three start with the three possible elements of Σ. Further this must be w_0 the longest element in I_{1d} and the unique longest in W. From the computation, and more easily, from the lattice drawn in Figure 1 we see that there are actually 8 maximal sequences.

By Theorems 1.1 and 1.2, we can read all admissible sequences for I_{θ} directly from our lattice for I_{1d}. Some samples follow. There will be 8 maximal admissible descending sequences for I_{θ}. Following the left most path down from the top we get $s_1 \bar{s}_2 s_3 s_1 w_0$ where the \bar{s} is an action in θ, is one maximal admissible descending sequence for I_{θ}. Two admissible descending sequences in I_{θ} represent the same element in I_{θ} if and only if the sequences represent the same element as admissible ascending sequence in I_{1d}. Hence, $\bar{s}_2 s_3 w_0 = \bar{s}_3 s_2 w_0$.

4. Proofs

Throughout this section we assume that the root system, Weyl Group, etc come from a maximal k-split torus of G as described in section 2. We also assume that the involution θ is the restriction of an involution of the group G.

Let Φ denote a root system in the Euclidean Vector Space, E, Δ a basis of Φ, Φ^+ and Φ^- the positive and negative roots, respectively, W the Weyl group of Φ and $\Sigma = \{ s_\alpha \mid \alpha \in \Delta \}$, where s_α denotes the reflection through α. If $\tau \in \text{Aut}(\Phi)$ is an involution then τ induces an involution of W as follows, $\tilde{\tau}(w) := \tau w \tau$. Following the standard abuse of notation we will write τ for $\tilde{\tau}$.

As in section 2, let θ be an involution such that $\theta(\Delta) = \Delta$, i.e., θ is either the identity or a diagram automorphism. By the following remark, it suffices to prove our theorems for the case that Φ is irreducible, which we assume from here on.

Remark 4.1. All possible Dynkin diagrams consist of a set of connected components each of which corresponds to an irreducible root system. From [Hel88] it follows that an involution either fixes a connected component of the Dynkin diagram or exchanges two identical copies. In the case where involution exchanges two connected components, the Weyl group for these two components is $W = W_1 \times W_1$, where W_1 is the Weyl group of the irreducible component. Also, $\Sigma = \Sigma_1 \times \Sigma_1$, where Σ_1 is the set of generators for W_1. Further, the set $I_{\theta} = \{ (w, w^{-1}) \mid w \in W_1 \}$ and the Bruhat order on I_{θ} is the usual Bruhat order on W_1. In particular, the admissible sequence for an element $(w, w^{-1}) \in I_{\theta}$ will be a sequence of the form $(r_1, \ldots, r_n) \in \Sigma \cup \overset{\sim}{\Sigma}$, such that $r_i \in \Sigma$ for all i. Moreover, each r_i is of the form $r_i = (s_j, e)$, for some $s_j \in \Sigma_1$. Thus, the presentations of
$(w, w^{-1}) \in \mathcal{I}_\theta$ as an admissible sequence are in one-to-one correspondence with the presentations of w as reduced expressions in Σ_1.

Remark 4.2. If Φ is of type $A_1, B_n, C_n, E_7, E_8, F_4$ or G_2 then there are no non-trivial diagram automorphisms. In these cases looking at twisted involutions is the same as looking at regular involutions. If Φ is of type $D_n, n \geq 5, A_n, n \geq 2$ or E_6 there is a unique non-trivial diagram automorphism of order 2 which we shall denote by θ. For D_4 there are 3 non-trivial diagram automorphisms of order 2. We shall only consider involutions of Φ coming from involutions of the group G. By the classification theorem of involutions of reductive algebraic groups (see [Hel88]) for n even, no involution of the group G induces a diagram automorphism of order 2 of the Dynkin diagram of type D_n.

Lemma 4.3. Let Φ be a root system with Weyl Group W. Then, $-\text{Id} \notin W$ if and only if Φ is of type A_n for $n \geq 2, D_n$ for n odd, or E_6.

Proof. This result can be found in [Hel91]. One can also check it case by case using the tables in [Bou81].

Recall $l(w)$ is the length of w with respect to Σ. It well known, (see for example [Bou81]), that the $l(w) = |w(\Phi^+) \cap \Phi^-|$. Recall that w_0 is defined to be the longest element in W, with respect to Σ. This is precisely the unique element such that $w_0(\Phi^+) = \Phi^-$. Notice that if $-\text{Id} \in W$ then $-\text{Id} = w_0$.

Lemma 4.4. Let $\theta \neq \text{Id}$ be a non-trivial diagram automorphism of order 2 as above, then $\theta w_0 = w_0 \theta = -\text{Id}$. Further, $w_0 \in \mathcal{I}_\theta$.

Proof. If $w_0 = -\text{Id}$ then by Lemma 4.3, Φ is of type $A_1, B_n, C_n, E_7, E_8, F_4$ or G_2 or D_{2n}. By remark 4.2 none of these cases has a non-trivial diagram automorphism. Hence, $w_0 \neq -\text{Id}$. Since $\theta(\Delta) = \Delta$ we get that $\theta(\Phi^+) = \Phi^+$. Then $\theta w_0(\Phi^+) = \Phi^-$, hence, $\bar{\theta}(w_0) := \theta w_0 \theta = w_0$. For the second equality we have that $-\text{Id} w_0(\Phi^+) = \Phi^+$, so since this is not the identity map it must be the unique non-trivial diagram automorphism θ.

Now, $\theta w_0 \theta w_0 = (-\text{Id})^2 = \text{Id}$ and by definition $\theta(w_0) = \theta w_0 \theta$. Hence $w_0^{-1} = \theta(w_0)$, so $w_0 \in \mathcal{I}_\theta$.

Lemma 4.5. If $(r_1, \ldots, r_k) \in \Sigma \cup \Sigma'$ is an admissible ascending sequence and $(r_1, \ldots, r_k) \cdot e \neq w_0$ then there exists an element $r_{k+1} \in \Sigma \cup \Sigma'$ such that $(r_1, \ldots, r_k, r_{k+1})$ is also an admissible ascending sequence.

To keep clear when we are computing under the two different involutions θ and Id we use some additional notation. Recall the an element $w \in W$ acts on $a \in \mathcal{I}$ by twisted conjugation which is defined as $w \ast a = w r_0(a w)^{-1}$. As before denote by \ast the twisted action of W on \mathcal{I}_θ, and \ast' the twisted action of W on \mathcal{I}_Id (which is just the usual conjugation). For $s \in \Sigma$, $a \in \mathcal{I}_\theta$ and $b \in \mathcal{I}_\text{Id}$ we will use the notation $\bar{s}a := s \ast a$, and $\bar{s}'b := s \ast' b$. Define $\Sigma := \{s \mid s \in \Sigma\}$ and $\Sigma' := \{s' \mid s \in \Sigma\}$. If $r = (r_1, r_2, \ldots, r_k)$ be a sequence in $\Sigma \cup \Sigma$ then define the action of r on $a \in \mathcal{I}_\theta$ by $r \cdot a := r_k \cdots r_2 r_1 a$. If r' is a sequence in $\Sigma \cup \Sigma'$ then define the action of r' on $b \in \mathcal{I}_\text{Id}$ similarly.

Lemma 4.6. Let $r = (r_1, r_2, \ldots, r_k)$ be a sequence in $\Sigma \cup \Sigma$, and define $r' := (r'_1, r'_2, \ldots, r'_k)$ to be the sequence in $\Sigma \cup \Sigma'$, where $r'_i = s$ if $r_i = s \in \Sigma$ and $r'_i = s'$ if $r_i = s \in \Sigma$. Then,
\[\mathbf{r} \cdot e = (\mathbf{r}' \cdot w_0)w_0 \]

Proof. It is useful to write that for all \(i, r_i = s_i\) or \(r_i = \bar{s}_i\). Let \((r_1, r_2, \ldots, r_n) \) be the subsequence of \(\mathbf{r} \) consisting of precisely the elements in \(\Sigma \), and so \((r_1', r_2', \ldots, r_n') \) will be the subsequence of precisely the elements in \(\Sigma' \). The left hand side above is then: \(\mathbf{r} \cdot e = r_1 \cdots r_2 r_1 e = s_k \cdots s_2 s_1 \theta(s_i_1) \theta(s_i_2) \cdots \theta(s_i) = s_k \cdots s_2 s_1 \theta(s_i_1) \theta(s_i_2) \cdots \theta(s_i) \). The right hand side above is

\[
(r' \cdot w_0) w_0 = (r'_k \cdots r'_2 r'_1 w_0)w_0 \\
= s_k \cdots s_2 s_1 w_0 s_i, s_i \cdots s_i \theta w_0 \\
= s_k \cdots s_2 s_1 \theta(s_i_1) \theta(s_i_2) \cdots \theta(s_i) = s_k \cdots s_2 s_1 \theta(s_i_1) \theta(s_i_2) \cdots \theta(s_i) \\
\]

□

Proof of Theorem 1.1. If \((r_1, r_2, \ldots, r_n) \) is a maximal admissible ascending sequence in \(\mathcal{I}_{\text{Id}} \) then \((r_1, r_2, \ldots, r_n) \cdot e = w_0 \). Hence, by Lemma 4.6 \((r'_1, r'_2, \ldots, r'_n) \cdot w_0 = w_0 \) and so \((r'_1, r'_2, \ldots, r'_n) \cdot w_0 = e \). Thus, \((r'_1, r'_2, \ldots, r'_n) \) is a maximal admissible descending sequence for \(I_0 \). It is easy to verify that the sequence \((r'_1, r'_2, \ldots, r'_n) \) is a maximal admissible descending sequence in \(I_0 \) if and only if \((r'_n, r'_{n-1}, \ldots, r'_1) \) is a maximal admissible ascending sequence in \(I_0 \).

□

Proof of Theorem 1.2. By Lemma 4.6, for all \(j \leq n, (r_1, r_2, \ldots, r_j) \cdot e = (r'_1, r'_2, \ldots, r'_j) \cdot w_0 \), hence,

\[
l((r_1, r_2, \ldots, r_j) \cdot e) = l((r'_1, r'_2, \ldots, r'_j) \cdot w_0).
\]

Consequently, \(l((r_1, r_2, \ldots, r_j) \cdot e) > l((r_1, r_2, \ldots, r_{j-1}) \cdot e) \) if and only if \(l((r'_1, r'_2, \ldots, r'_j) \cdot w_0) < l((r'_1, r'_2, \ldots, r'_{j-1}) \cdot w_0) \). This proves (1) and the argument for (2) is similar. Statement (3) follows again from Lemma 4.6.

□

5. PROPERTIES OF THE BRUHAT ORDER

We collect some properties about admissible ascending sequences.

Corollary 5.1. If \(\Phi \) is of type \(A_1, B_n, C_n, E_7, E_8, F_4 \) or \(G_2 \), then every admissible ascending sequence is also an admissible descending sequence and vice versa. That is, the lattice is symmetric.

Proof. By Lemma 4.3, \(w_0 = -\text{Id} \) in \(W \) if and only if \(\Phi \) is of type \(A_1, B_n, C_n, E_7, E_8, F_4 \) or \(G_2 \). By an argument similar to that of Lemma 4.6, the result follows.

□

We next show that all elements of \(\mathcal{I}_{\text{Id}} \) can be obtained by admissible ascending sequences in which all elements of \(\Sigma \) occur before all elements in \(\Sigma' \).

Theorem 5.2. Assume \(\Phi \) is simply-laced. Then for every \(w \in \mathcal{I}_{\text{Id}} \) there is an admissible ascending sequence \(\mathbf{r} = (r_1, r_2, \ldots, r_k) \) with \(w = \mathbf{r} \cdot e \), such that the subsequence of \(\mathbf{r} \) consisting of precisely the elements in \(\Sigma \) is \((r_1, r_2, \ldots, r_v) \) for some \(v \).
Proof. The proof is by induction on the size of an admissible ascending sequence for \(w \). Note that each admissible sequences of size 1 contains one element from \(\Sigma \). Suppose \(w = \bar{r} \bar{s} \cdot e \), where \((r_1, \ldots, r_{k-2}, \bar{s}, t)\) is an admissible ascending sequence such that \(\bar{s} \in \bar{\Sigma} \) and \(t \in \Sigma \). It will be convenient to write \(x := r \cdot e \). This is schematical shown in Figure 2. We show that \(\bar{w} \) is also in \(I_{1d} \) and of smaller length than \(w \). First, if \(st = ts \) then \(w = \bar{s} \bar{r} \cdot e \) and we’re done. So assume \(st \neq ts \).

Notice that \(\bar{w} = stsx \), so \(l(\bar{w}) \leq l(w) \). Assume these lengths are equal, to get a contradiction. If they are equal then \(sw = st\bar{s}x \in I_{1d} \). By assumption \(tsxst = sxst \neq x \) since \(w \) came from an ascending sequence, hence \(sw = st\bar{s}x = stxsx = s(sxs)t = xst \), and \(txs \in I_{1d} \).

Now it cannot be that both \(txs \in I_{1d} \) and \(t\bar{s}x \in I_{1d} \). The former implies \(tsx txs = e \), while the latter implies \(tsx stxsx = tsx txs = e \). Together these force \(x = txs \). By the exchange property, there exists a minimal representation of \(x \) that either begins with \(t \) or ends in \(s \). If there is a minimal representation of \(x \) that begins with \(t \), then \(l(tx) < l(x) \), but since \(xs = tx \) then \(l(xs) < l(x) \) as well. Hence there must be a minimal representation of \(x \) ending with \(s \) as well. Thus \(x = \sigma_1 \cdots \sigma_h s \), \(\sigma_i \in \Sigma \) but then \(\bar{s}x = s\sigma_1 \cdots \sigma_h ss = s\sigma_1 \cdots \sigma_h \) which has the same length as \(x \), a contradiction. \(\square \)

5.3. Orbits and stabilizers. The Bruhat Lattice of \(I_\theta \) provides a method to determine the orbits and stabilizers under \(\theta \) twisted action. It is useful to consider an edge-labeled graph \(G \) defined as follows. Vertices of \(G \) are precisely the elements of \(I_\theta \). There is an edge \((v, w)\) labeled \(\bar{s}_i \) in \(G \) precisely when \(\bar{s}_i v = w \). This may result in multiple edges. Further, if \(s_i v = w \) then put loops labeled \(\bar{s}_i \) at \(v \) and \(w \). An example of this orbit stabilizer graph for \(S_4 \) is given in Figure 3. Note by Theorem 1.2, the graph and edge labels do not depend on \(\theta \). Recall that a walk in a graph is a sequence \((v_1, \ldots, v_k)\) of vertices in \(G \) such that \(v_i, v_{i+1} \) is an edge (or loop) in \(G \). The walk is closed if further \(v_1 = v_k \).

Proposition 5.4. For \(\theta \), \(G \) etc as defined above. Two elements of \(I_\theta \) are in the same orbit under twisted action by elements of \(W \), if and only if they are in the same connected component of \(G \). An element \(s_{i_1} s_{i_2} \cdots s_{i_k} \) in \(W \) is in the stabilizer of \(x \) under conjugation if and only if there is a closed walk at \(x \) whose edge labels are precisely \(\bar{s}_{i_1}, \bar{s}_{i_2}, \ldots, \bar{s}_{i_k} \).

References

Figure 3. Orbit-Stabilizer Graph of I_0 for S_4.

Department of Mathematics, Smith College, Northampton, MA 01063
E-mail address: rhaas@smith.edu

Department of Mathematics, North Carolina State University, Raleigh, N.C., 27695-8205
E-mail address: loek@math.ncsu.edu