BEAMER
An Introduction

Ryan Siskind
NCSU

October 3, 2007
1. Introduction
 - Overview of the Beamer Class
 - Basic Setup

2. Creating a Slideshow
 - Themes and Colors
 - Titles
 - Sections

3. Overlays

4. Graphics
 - Figures
 - Movies
History of Beamer

“I originally created BEAMER mainly in my spare time as a small private collection of macros to make using the seminar class easier. The first full version was for my PhD defense presentation in February 2003. A month later, I put the package on CTAN at the request of some colleagues. After that, things somehow got out of hand.”

-Till Tantau, 2004
Features of the Beamer Class

1. Can use standard \texttt{pdflatex} and \texttt{latex+dvips}.

2. Normal LaTeX commands; uses section/subsection/etc. for structuring; commands such as \texttt{tableofcontents} and \texttt{align} have the same meaning as in \texttt{article} class.

3. Easy overlays (which is what is going on right now).

4. No external programs needed other than what you already use for \LaTeX.

5. Font manipulation, movie files, fun stuff, etc.
Features of the Beamer Class

1. Can use standard `pdflatex` and `latex+dvips`.
2. Normal LaTeX commands;
 - uses section/subsection/etc. for structuring;
 - commands such as `\tableofcontents` and `align` have the same meaning as in `article` class.
Features of the Beamer Class

1. Can use standard \texttt{pdflatex} and \texttt{latex+dvips}.
2. Normal LaTeX commands;
 - uses section/subsection/etc. for structuring;
 - commands such as \texttt{\textbackslash tableofcontents} and \texttt{align} have the same meaning as in \texttt{article} class
3. Easy overlays (which is what is going on right now)
Features of the Beamer Class

1. Can use standard `pdflatex` and `latex+dvips`.
2. Normal LaTeX commands;
 - uses section/subsection/etc. for structuring;
 - commands such as `\tableofcontents` and `align` have the same meaning as in `article class`
3. Easy overlays (which is what is going on right now)
4. No external programs needed other than what you already use for LaTeX
Features of the Beamer Class

1. Can use standard `pdflatex` and `latex+dvips`.
2. Normal LaTeX commands;
 - uses section/subsection/etc. for structuring;
 - commands such as `\tableofcontents` and `align` have the same meaning as in `article` class
3. Easy overlays (which is what is going on right now)
4. No external programs needed other than what you already use for `LaTeX`
5. Font manipulation, movie files, fun stuff, etc.
Beamer is hosted at

http://latex-beamer.sourceforge.net/
BEAMER is hosted at

http://latex-beamer.sourceforge.net/

1. Files (BEAMER, pgf, xcolor);
2. Instructions for installation;
3. BEAMER examples.
Installation

2. Choose to download the “\LaTeXBEAMER Class”
3. Download the latest version of \texttt{latex-beamer}, \texttt{pgf}, and \texttt{xcolor}

Important Note

The \LaTeXBEAMER user guide is found in the \texttt{latex-beamer} file and is \textsc{ÜBER} helpful.
More Installation

For a permanent installation:

1. Find your local \texttt{texmf} tree (usually found in
 /usr/local/share/texmf/, \texttt{c:\localtexmf\}, or
 \texttt{c:\Program Files\TeXLive\texmf-local\})
More Installation

For a permanent installation:

1. Find your local `texmf` tree (usually found in `/usr/local/share/texmf/`, `c:\localtexmf\`, or `c:\Program Files\TeXLive\texmf-local\`)
2. In the `texmf` directory, create the sub-sub-sub-directories;
 - `texmf/tex/latex/beamer`,
 - `texmf/tex/latex/pgf`, and
 - `texmf/tex/latex/xcolor`
More Installation

For a permanent installation:

1. Find your local `texmf` tree (usually found in `/usr/local/share/texmf/`, `c:\localtexmf\`, or `c:\Program Files\TeXLive\texmf-local\`).

2. In the `texmf` directory, create the sub-sub-sub-directories:
 - `texmf/tex/latex/beamer`,
 - `texmf/tex/latex/pgf`, and
 - `texmf/tex/latex/xcolor`

3. Place all **UNZIPPED** files from the packages you already downloaded into these new directories.
More Installation

For a permanent installation:

1. Find your local texmf tree (usually found in /usr/local/share/texmf/, c:\localtexmf, or c:\Program Files\TeXLive\texmf-local)

2. In the texmf directory, create the sub-sub-sub-directories;
 - texmf/tex/latex/beamer,
 - texmf/tex/latex/pgf, and
 - texmf/tex/latex/xcolor

3. Place all UNZIPPED files from the packages you already downloaded into these new directories.

4. Rebuild the \TeX file database by running the command texhash, mktexlsr, or via menu options (if available)
\documentclass{beamer}
\begin{document}
\begin{frame}
\begin{itemize}
\item Hello World!
\end{itemize}
\end{frame}
\end{document}
Presenting in Style

Themes dictate colors, information bars, and layout of presentation. This presentation uses the theme `\usetheme{CambridgeUS}`

- Themes, p135-148;
- Templates, p149-158;
- Colors, p162-175.
Frame Titles
...and Subtitles

2 ways to create titles and subtitles for a frame:

1. \begin{frame}\{Frame Title\}\{Frame Subtitle\}
2. \frametitle\{Frame Title\}\framesubtitle\{Frame Subtitle\}
Sectioning

Notice the sections and subsections at the top of each slide.

- \section[Short Section Name]{Long Section Name}
- \subsection[Short Subsection Name]{Long Subsection Name}
Sectioning

Notice the sections and subsections at the top of each slide.

\section[Short Section Name]{Long Section Name}
\subsection[Short Subsection Name]{Long Subsection Name}

“Short names” go into slide headers; “Long names” go into outlines.
Sectioning

Notice the sections and subsections at the top of each slide.

\section[Short Section Name]{Long Section Name}
\subsection[Short Subsection Name]{Long Subsection Name}

“Short names” go into slide headers;
“Long names” go into outlines.

All sections and subsections automatically added to slideshow outline!
Loooooong Slides

BEAMER does not automatically put what doesn’t fit from one slide onto another slide.

- You must keep track of slide lengths yourself; or
- you can use the frame option
 \begin{frame}[allowframebreaks]

This automatically breaks up the long slide and puts the extra content onto new slides.
\textsc{Beamer} does not automatically put what doesn’t fit from one slide onto another slide.

- You must keep track of slide lengths yourself; or
- you can use the frame option
 \begin{frame}[allowframebreaks]
This automatically breaks up the long slide and puts the extra content onto new slides.
+ You don’t have to worry about the length of your slides.
\textsc{Beamer} does not automatically put what doesn’t fit from one slide onto another slide.

- You must keep track of slide lengths yourself; or
- you can use the frame option

\begin{frame}[allowframebreaks]

This automatically breaks up the long slide and puts the extra content onto new slides.

+ You don’t have to worry about the length of your slides.
+ Slide title is continued on each subsequent slide from the original frame.
Looooooongg Slides

\textbf{BEAMER} does not automatically put what doesn’t fit from one slide onto another slide.

- You must keep track of slide lengths yourself; or
- you can use the frame option
 \begin{frame} [allowframebreaks]

This automatically breaks up the long slide and puts the extra content onto new slides.
+ You don’t have to worry about the length of your slides.
+ Slide title is continued on each subsequent slide from the original frame.
- Most overlay options are not usable.
Why and How Overlays Are Used

- Much like the transitions in PowerPoint
- Allows different information to be shown at different times on same slide
- User defines when information is shown using \textit{<Transparency numbers>}
Why and How Overlays Are Used

- Much like the transitions in PowerPoint
- Allows different information to be shown at different times on same slide
- User defines when information is shown using \textless Transparency numbers\textgreater

 If you want information to show up immediately: \textless 1 \textgreater
Why and How Overlays Are Used

- Much like the transitions in PowerPoint
- Allows different information to be shown at different times on the same slide
- User defines when information is shown using \textit{Transparency numbers}

\begin{itemize}
 \item If you want information to show up immediately: $<1>$
 \item If you want information to show up only in the third set: $<3>$
\end{itemize}
Why and How Overlays Are Used

- Much like the transitions in PowerPoint
- Allows different information to be shown at different times on same slide
- User defines when information is shown using
 \(<\text{Transparency numbers}>\)

 If you want information to show up immediately: \(<1->\)
 If you want information to show up only in the third set: \(<3>\)
 If you want information to show up only in the second and fourth sets: \(<2, 4>\)
The Overlay Feature
For Lists

\begin{enumerate}
\item<1-> First item;
\item<2-> Second item;"
\ ...
\item<3-> Last item.
\end{enumerate}
The Overlay Feature
For Lists

\begin{enumerate}
\item<1-> First item;
\item<2-> Second item;
...
\item<3-> Last item.
\end{enumerate}
The Overlay Feature
For Lists

\begin{enumerate}
\item<1-> First item;
\item<2-> Second item;
\item<3-> Last item.
\end{enumerate}

1 First item;
2 Second item;
...
The Overlay Feature
For Lists

\begin{enumerate}
\item<1-> First item;
\item<2-> Second item;
\item<3-> Last item.
\end{enumerate}
The Overlay Feature
For Non-Lists

You must use \uncover< \textit{Transparency numbers} >

An Algorithm For Finding Primes Numbers.

\uncover<1->{int main (void)} \uncover<1->{
\uncover<1->{std::vector<bool> is_prime (100, true);} \uncover<1->{ for (int i = 2; i < 100; i++)
\uncover<2->{ { if (is_prime[i])}} \uncover<2->{
\{ \uncover<3->{ std::cout \texttt{\textasciitilde~} i \texttt{\textasciitilde~} " ";
\uncover<3->{ for (int j = i; j < 100;}
\uncover<3->{ { is_prime [j] = false, j+=i);} \uncover<2->{ \}}
\uncover<1->{ return 0;}
\uncover<1->{}
}
int main (void) {
 std::vector<bool> is_prime (100, true);
 for (int i = 2; i < 100; i++)
 if (is_prime[i])
 std::cout « i « " ";
 for (int j = i; j < 100;
 is_prime[j] = false, j+=i);

 return 0;
}

int main (void) {
std::vector<bool> is_prime (100, true);
for (int i = 2; i < 100; i++)
 if (is_prime[i])
 {
 // Code
 }
 return 0;
}
int main (void) {
 std::vector<bool> is_prime (100, true);
 for (int i = 2; i < 100; i++)
 if (is_prime[i])
 { std::cout « i « " ";
 for (int j = i; j < 100;
 is_prime [j] = false, j+=i);
 } return 0;
}
int main (void) {
std::vector<bool> is_prime (100, true);
for (int i = 2; i < 100; i++)
if (is_prime[i])
{ std::cout « i « " ";
for (int j = i; j < 100;
is_prime [j] = false, j+=i);
} return 0;
}

Using Verbatim

To use any sort of verbatim text, you must declare the frame as fragile:
\begin{frame}[fragile]
Ordering the Overlays

\begin{enumerate}
\item \uncover<2,6> Start at $T>T_g$ and deform
\item \uncover<3,6> Cool below T_g
\item \uncover<4,6> Release applied strain
\item \uncover<5,6> Heat above T_g and recovery
\end{enumerate}
Ordering the Overlays

\begin{enumerate}
\item \uncover<2,6> {Start at $T > T_g$ and deform}
\item \uncover<3,6> {Cool below T_g}
\item \uncover<4,6> {Release applied strain}
\item \uncover<5,6> {Heat above T_g and recovery}
\end{enumerate}

Start at $T > T_g$ and deform
Ordering the Overlays

\begin{enumerate}
\item \uncover<2,6> {Start at $T>T_g$ and deform}
\item \uncover<3,6> {Cool below T_g}
\item \uncover<4,6> {Release applied strain}
\item \uncover<5,6> {Heat above T_g and recovery}
\end{enumerate}

Cool below T_g
Ordering the Overlays

\begin{enumerate}
\item Uncover<2,6> {Start at $T>T_g$ and deform}
\item Uncover<3,6> {Cool below T_g}
\item Uncover<4,6> {Release applied strain}
\item Uncover<5,6> {Heat above T_g and recovery}
\end{enumerate}

Release applied strain
Ordering the Overlays

\begin{enumerate}
\item \uncover<2,6>{Start at $T>T_g$ and deform}
\item \uncover<3,6>{Cool below T_g}
\item \uncover<4,6>{Release applied strain}
\item \uncover<5,6>{Heat above T_g and recovery}
\end{enumerate}

Heat above T_g and recovery
Ordering the Overlays

\begin{enumerate}
\item \uncover<2,6> \{Start at $T > T_g$ and deform\}
\item \uncover<3,6> \{Cool below T_g\}
\item \uncover<4,6> \{Release applied strain\}
\item \uncover<5,6> \{Heat above T_g and recovery\}
\end{enumerate}

1. Start at $T > T_g$ and deform
2. Cool below T_g
3. Release applied strain
4. Heat above T_g and recovery
In general, \includegraphics\textit{set(s) to show graphic}\}

To overlay the figures on top of each other, use the command \llap

\llap{\includegraphics<1,6>[height=1.3in]{./figures/SMPThermoMechCycle}}%\llap{\includegraphics<2>[height=1.3in]{./figures/ExpFig1}}%\llap{\includegraphics<3>[height=1.3in]{./figures/ExpFig2}}%\llap{\includegraphics<4>[height=1.3in]{./figures/ExpFig3}}%\llap{\includegraphics<5>[height=1.3in]{./figures/ExpFig4}}%
Inserting Figures

.eps or .ps files
Only when using \texttt{latex} and \texttt{dvips}

.pdf, .jpg, .jpeg or .png files
Only when using \texttt{pdflatex}
\usepackage{multimedia}
Thank You!

rdsiskin@ncsu.edu