
Structures 6 (2016) 170–181

Contents lists available at ScienceDirect

Structures

j ourna l homepage: www.e lsev ie r .com/ locate /s t ructures
A general characterization of the Hardy Cross method as sequential and
multiprocess algorithms
John Baugh ⁎, Shu Liu
Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, USA
⁎ Corresponding author.
E-mail address: jwb@ncsu.edu (J. Baugh).

http://dx.doi.org/10.1016/j.istruc.2016.03.004
2352-0124/© 2016 The Institution of Structural Engineers
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 18 March 2016
Accepted 22 March 2016
Available online 9 April 2016
The Hardy Cross method of moment distribution admits, for any problem, an entire family of distribution se-
quences. Intuitively, themethod involves clamping the joints of beams and frames against rotation and balancing
moments iteratively, whether consecutively, simultaneously, or in some combination of the two. We present
common versions of the moment distribution algorithm and generalizations of them as both sequential and
multiprocess algorithms, with the latter exhibiting the full range of asynchronous behavior allowed by themeth-
od. We prove, in the limit, that processes so defined converge to the same unique solution regardless of the dis-
tribution sequence or interleaving of steps. In defining the algorithms, we avoid overspecifying the order of
computation initially using a sequential, nondeterministic process, and then more generally using concurrent
processes.

© 2016 The Institution of Structural Engineers. Published by Elsevier Ltd. All rights reserved.
Keywords:
Hardy Cross method
Moment distribution
Convergence
Algorithms
Concurrency
1. Introduction

Moment distribution is a well-known iterative technique for analyz-
ing statically indeterminate beams and frames [1,2]. The method works
by “clamping” joints, applying external loads, and then successively
releasing them, allowing them to rotate, and reclamping them. Each
time, the internalmoments at the joints are distributed based on the rel-
ative stiffnesses of the adjoining members. The method converges
under a variety of distribution sequences, e.g., varying the order in
which joints are unclamped. In addition, there is inherent concurrency
in the method—and hence internal nondeterminism—since moments
can be distributed simultaneously and summed.

The method was first published in 1930 by Professor Hardy Cross,
years after having taught it to his students at the University of Illinois
[12]. The calculations can easily be performed by hand, and the rapid
convergence of the method in practice made it possible for engineers
to estimate end moments in just a few iterations. Although the method
has largely been supersededby the convenience and availability ofmore
general computational approaches, for decades it was the primary tool
used to analyze reinforced concrete structures [5].

Conceived before the advent of computers, the Hardy Cross method
nevertheless displays features that are interesting from a computational
point of view. Its conventional, tabular layout suggests inherent
parallelism in the method, and hence internal nondeterminacy, since
moments can be distributed in different orders or even simultaneously.
In this paper we offer a general characterization of the method as
algorithms that are externally deterministic—in the limit the same
. Published by Elsevier Ltd. All rights
input produces the same result—but internally the operations can be
performed in any number of differentways. Themanner bywhich algo-
rithms can be so expressed to avoid overspecifying behavior, and
yet also sufficiently constrained to ensure correctness, motivates the
presentation and results that follow. Other aspects like data representa-
tion and the expression of concurrency share features with more com-
plex domain decomposition approaches and element-by-element
solvers used in finite element analysis, making the Hardy Cross method
an attractive vehicle for their exploration in the classroom.

In addition to its computational aspects, it should be noted that only
relatively recently have convergence proofs been published for the
method, and only for its two most common, and fixed, distribution
sequences. As the name implies, the simultaneous joint balancing ap-
proach balances all non-fixed joints at the same time, and then records
carry-overmoments simultaneously. In 2002, Volokh [18] characterized
the Hardy Cross method as an incremental form of the Jacobi iterative
method [7], in which calculations of the current iteration use only
those from the prior iteration, and none from the current one. The
equations on which his procedure operates are derived from the
displacement method, and convergence guaranteed, he argues, since
the coefficientmatrix corresponds to stiffness and is therefore diagonal-
ly dominant.

Not addressed by Volokh is the consecutive joint balancing
approach, in the terminology of Gere [6], which corresponds more di-
rectly to the intuitive idea of physically releasing and clamping joints
in turn. Based on this version, Guo [8] characterized the Hardy Cross
method in 1987 as an incremental form of the Gauss–Seidel method
[7], which uses the most recently updated estimates, including those
in the current iteration. Like Volokh, and apparently unknown to him,
Guo starts with the classical displacementmethod of structural analysis
reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.istruc.2016.03.004&domain=pdf
http://dx.doi.org/10.1016/j.istruc.2016.03.004
mailto:jwb@ncsu.edu
http://dx.doi.org/10.1016/j.istruc.2016.03.004
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/structures

171J. Baugh, S. Liu / Structures 6 (2016) 170–181
to derive his system of equations. He then argues that this form con-
verges due to the positive definiteness of the coefficient matrix.

In contrast with the work of both Volokh and Guo, our results show
that the Hardy Crossmethod is neither purely a Jacobi-like nor a Gauss–
Seidel-like iteration. Instead, it can be presented in a general form that
encompasses those as well as other joint balancing approaches. That
Cross himself viewed the method as being flexible in its application is
clear from his 1932 publication [2], where he describes variations that
allow for “abbreviated computations” using themethod, that accommo-
date structures with several conditions of loading, and so on. Another
contrast with Volokh and Guo is that, instead of beginning with the
displacement method, we work directly with the Hardy Cross method
itself to construct corresponding iterationmatrices. Proofs are then per-
formed by focusing on the mathematical properties of those matrices
without resorting to physical or structural analogies.

In the sections that follow, we introduce an approach for
representing continuous beams and frames, and use it to define algo-
rithms for both consecutive and simultaneous joint balancing. We
then presentmore general characterizations of the Hardy Crossmethod
as a) a sequential, nondeterministic algorithm, and b) amultiprocess al-
gorithm, and formalize them by showing their relationships to matrix
forms. The series of iteration matrices produced by the algorithms are
then shown to be equivalent.

2. Problem representation and basic algorithms

“The idea behind digital computers may be explained by saying that
thesemachines are intended to carry out any operationswhich could be
done by a human computer.” –Alan Turing [17]

Professor Cross defined moment distribution as a hand technique
well before Turing's seminal work and the modern notion of an algo-
rithm. Nevertheless, it is worth looking at the method as such and in a
modern context. Here, we formalize what that means and define the
conditions under which the method converges.

First, though, a note is in order about syntax of the pseudocode that
follows. We include the elements of conventional imperative program-
ming languages, along with common mathematical structures like sets
for convenience. In the presentation, a hash symbol (#) comments to
the end of line. For structuring data, compound items are represented
as objects with attributes. We employ the convention adopted by
many object-oriented languages, that of a dot followed by an attribute
name. For instance, attribute a of object x can be referred to as x .a,
and it could be assigned a value of 5 as so: x .a=5. For corresponding
implementations of the algorithms in the Python programming
language [14], please see Appendix A.

To see how problems can be represented for processing, we start
with the continuous beam shown in Fig. 1, which we refer to as our
model problem. Each end has a distribution factor (DF) and a fixed-
end moment from the applied load (FEM), a carry-over factor of 0.5,
and EI is constant. Recalling that a graph can be defined as G=(V,E),
Fig. 1. Continuous beam with loading conditions and corresponding fixed-end moments.
with vertex set G .V and edge set G .E, we define the directed graph in
Fig. 2 to maintain the relevant beam properties.

We denote by e=(u,v) and e ¼ ðv;uÞ a pair of antiparallel directed
edges. Each member has two member ends, with edge (u,v) defined
to be the member end associated with joint u. We define for each
edge e∈G .E attributes (d,c,m), where e .d is the distribution factor, e .c
is the carry-over factor, and e .m is the moment (initially defined to be
the fixed-end moment). For the model problem, for instance, we have

a; bð Þ:m ¼ �172:8

Since the carry-over factors are all 0.5, for allmember ends ewehave
e .c=0.5.

Wedefine the notion of amember end set associatedwith each joint,
i.e., the set of member ends incident from joint u:

ends G;uð Þ ≜ w; vð Þj w; vð Þ ∈ G:E ∧w ¼ uf g

so for the model problem we have

ends G; bð Þ ¼ b; að Þ; b; cð Þf g

For any joint uwe can find its unbalanced moment by summing the
moments of its member ends:

moment G;uð Þ ≜∑ e:mje ∈ ends G;uð Þf g

A non-fixed joint is eligible for unclamping if it has member ends
with positive distribution factors. We define a function active of joints
that are eligible:

active Gð Þ ≜ uju∈G:V∧∃e: e ∈ ends G;uð Þ ∧ e:d N 0ð Þf g

For instance, for joint a we have only a single member end with
(a,b).d=0, so the only active joints are b and c:

active Gð Þ ¼ b; cf g

A basic step in the moment distribution method is that of
unclamping, or releasing a joint, and distributing its unbalancedmoment
and the associated carry-over amounts. The algorithm RELEASE is shown
in Fig. 3, where −= is the infix decrement-by operator and × is scalar
multiplication. It operates on a joint u and distributes an unbalanced
moment x by updating its own moments on edges (u,v) and, for carry-
over amounts, edges (v,u).

We are now able to find a solution by repeatedly releasing eligible
joints until a desirable level of convergence has been obtained:

Release G; b;moment G; bð Þð Þ

Release G; c;moment G; cð Þð Þ

Release G; b;moment G; bð Þð Þ

Release G; c;moment G; cð Þð Þ

…

Fig. 2. Structure represented as a directed graph.

Fig. 3. Algorithm for distributing at joint u an unbalanced moment x.

172 J. Baugh, S. Liu / Structures 6 (2016) 170–181
Such a process corresponds to a consecutive joint balancing scheme,
because the moments distributed in each call to RELEASE draw on the
most recently updatedmember endmoments.When converged, the so-
lution is available in the edge attribute (u,v).m for all (u,v)∈G .E.
Fig. 5.Moment distribution with simultaneous joint balancing.

2.1. Consecutive joint balancing

Putting consecutive releases into an iterative algorithm that tests for
convergence, as above, is straightforward. A consecutive joint balancing
algorithm, SOLVE-CON, is shown in Fig. 4. It is defined so that in one cycle,
each active joint is released and therefore balanced once, and the
corresponding carry-over amount is recorded immediately afterward,
yielding a Gauss–Seidel-like iteration. A tolerance tol is used to deter-
mine convergence. Once convergence is reached, as before, the solution
is available in the edge attribute (u,v) .m for all (u,v)∈G .E. Note that,
because the order inwhich joints are released is left undefined, the algo-
rithm displays a minor degree of internal nondeterminism, though this
leaves convergence unaffected [6].
2.2. Simultaneous joint balancing

Cross's initial approach using simultaneous balancing requires that
moments be “read” and cached, like the Jacobi iterative method,
which performs a cycle of updates exclusively from values obtained in
the prior cycle. The simultaneous joint balancing algorithm SOLVE-SIM,
shown in Fig. 5, is thus defined so thatmember endmoments calculated
in one cycle are used to determinemoments in the next cycle. To do so,
we make use of an attribute (m) of vertex objects to store unbalanced
moments for each joint (lines 5 and 6), allowing updates to be simulta-
neously performed en masse (line 10). Again, a tolerance tol is used to
determine convergence, and on completion the solution is available in
the edge attribute (u,v) .m for all (u,v)∈G .E.

A characteristic of both algorithms, above, is that they complete one
cycle beforemoving to the next. Joints are released either simultaneous-
ly or one by one until all have been released, completing a cycle and
allowing the next round of releases to begin, though this is not strictly
required for convergence [6]. As we show in the following sections,
further abstraction of the consecutive and simultaneous joint balancing
algorithms is possible, resulting in a more general characterization of
the Hardy Cross method.
Fig. 4.Moment distribution with consecutive joint balancing.
3. Abstraction of the basic algorithms

“Nondeterminism plays an important role in the specification of
systems, since it enables underspecification, providing some flexibility
to the implementor and enabling some decisions to be deferred until
the appropriate time.” –Steve Schneider [16]

Abstraction is the process of ignoring details that are of no immedi-
ate concern: it is a many-to-one mapping that allows one to treat
different things as though they are the same. Here, those details are
the differences in an algorithm that might be viewed as incidental,
and we can use nondeterminism to abstract from them.

Moving in the other direction is refinement, the opposite of abstraction.
If algorithm P refines S, thenweview S as being lessprescriptive thanP, and
we write S⊑P. The algorithms SOLVE-CON and SOLVE-SIM are refinements of
the sequential and multiprocess algorithms presented in this section.

3.1. A sequential algorithm

First, we present a sequential abstraction of SOLVE-CON and SOLVE-SIM.
The algorithmSOLVE-SEQ, shown in Fig. 6,makes use of a nondeterministic
subset operator that, as the name implies, yields an arbitrary subset of
another set. It is implicitly defined as:

∀x: x ∈ subset Bð Þ⇒x ∈ Bð Þ

andwith themild fairness constraint that, in the limit, an element of the
set is produced infinitely often.

The algorithm is defined so that in one iteration of the while loop, a
subset of active joints is released simultaneously. Since those being
released are chosen arbitrarily at each iteration, some joints may be
balancedmore frequently than others. In otherwords, it is not necessary
Fig. 6. Generalized moment distribution as a sequential algorithm.

Fig. 7. Generalized moment distribution as a multiprocess algorithm.

173J. Baugh, S. Liu / Structures 6 (2016) 170–181
to complete a full cycle before moving on to the next cycle. In the limit,
joints are balanced infinitely often and none is left unbalanced. We
prove the algorithm is correct in Section 5 by showing it is functionally
equivalent to SOLVE-CON and SOLVE-SIM.

That SOLVE-SEQ is an abstraction of the basic algorithms should be
clear. For instance,

SOLVE � SEQ ⊑ SOLVE � CON:

since we can imagine subset(active(G)) on line 5 always returning a
single, different element of active(G) until the set is exhausted, and
then repeating, yielding the behavior of the joint balancing approach
of SOLVE-CON. Also,

SOLVE � SEQ ⊑ SOLVE � SIM

since we can imagine subset(active(G)) always returning the full set
active(G) at each iteration, yielding the behavior of SOLVE-SIM.

3.2. A multiprocess algorithm

Sometimes it is more natural to specify the behavior of a system in
terms of multiple, concurrent processes. A multiprocess algorithm is a
nondeterministic composition of program components, or processes,
that work independently but share state and coordinate updates as nec-
essary. Such an approach can beused to define a fully asynchronous ver-
sion of the Hardy Cross method that allows releases to be performed
simultaneously, consecutively, and in combination, as before, but also
interleaved arbitrarily, down to the statement level.

The multiprocess algorithm SOLVE-MUL, shown in Fig. 7, defines pro-
cesses that evolve concurrently for each active joint, i.e., for each vertex
i∈active(G). The processes share access to G, the structure being
analyzed. Thus, the process associated with joint u has access to its
own moments (u,v) .m for any v, as well as a moment of joint v,
i.e., (v,u) .m, when carry-over moments are written. Each joint process
then responds when its moment is unbalanced, which can be induced
by moments being carried over from one or more adjacent joints.

Several aspects of the algorithmwarrant comment. Generally speak-
ing, because sharing state between processes can result in conflicts, we
may specify some steps to be performed atomically, such as assignment
statements, tests in a loop or a conditional, and decrement-by opera-
tions. A statement is atomic if it appears to other processes to occur in-
stantaneously, so that no intermediate states are visible. Atomicity, in
our algorithm, must be guaranteed by the decrement-by operation
within RELEASE to sidestep the so-called lost update problem.1

Guarding each joint release is an await statement, which is success-
ful only when the joint's unbalanced moment exceeds a specified
tolerance. That is, the process cannot advance beyond the statement
when its moments balance: it blocks until the condition becomes true.
Numerically there is no harm in balancing joints that are already bal-
anced, but there is the potential danger that, in real implementations,
the process will otherwise get away from us and take over the
computer's CPU.2
1 In our multiprocess algorithm, when one joint carries over a moment to an adjacent
joint, the adjacent joint may also be distributing a moment to the samemember end, cre-
ating a potential conflict. If the decrement-by operation is non-atomic, one of the updates
could be lost. Consider, for instance, the following scenario. A variable xwith a value of 10
is shared by two processes, and one of them executes the statement x=x-7while the oth-
er executes x=x-2. If the statements are performed atomically, executing them in either
order results in x having a final value of 1. If they are not performed atomically, however,
and both statements simultaneously “read” the initial value of x (accessing its value on the
their right-hand sides), and then perform their updates, the final value of xwill be either 3
or 8. In other words, one of the updates is lost.

2 There is no counterpart to await in sequential languages. Instead, it corresponds to the
well-known wait/notify pattern of process communication, with condition variables and
locks, in multithreaded languages like Python and Java. Here, the await statement is
modeled after the construct of the same name in the algorithm language PlusCal [9].
When converged, all joint processes block on their await statements,
since all joints are balanced, and the solution is available in the edge at-
tribute (u,v) .m for all (u,v)∈G .E, as before. In contrast with sequential
programs, however, a multiprocess implementation would ideally de-
tect this state of termination using a separate, lower-priority process,
quiescence detection [19], or more general techniques like Dijkstra's
ring-based termination detection algorithm [3]. See Liu's thesis [10]
for additional details.

It should be clear that SOLVE-MUL is an abstraction of the sequential
algorithm, so we have

SOLVE � MUL ⊑ SOLVE � SEQ

Since this is so, SOLVE-MUL is also an abstraction of SOLVE-CON and
SOLVE-SIM. For instance, a multiprocess scheduler could choose to exe-
cute the joint processes sequentially, one after another, to yield the be-
havior of SOLVE-CON. Alternatively, it might schedule them concurrently
so that line 8 of each process causes the unbalanced moments,
moment(G, i), to be read concurrently, after which releases are simulta-
neously performed, to yield the behavior of SOLVE-SIM.

4. Iteration matrices for consecutive and simultaneous approaches

“The inherent simplicity of the moment-distribution method can be
combined with the matrix methods to give a practical method of
analysis.” –Ralph Mozingo [13]

In 1968, Mozingo published a matrix formulation for simultaneous
joint balancing that results in a geometric series whose sum can be
expressed in closed form. Terms in the series are the sums and products
of matrices that encode distribution and carry-over factors. We make
use of this basic formulation, elaborating on matrix properties needed
for the proofs that follow, and extending the approach so that it applies
to generalized distribution sequences.

Edge indices. To allow assembly into a system of equations, we
define an edge index function, a bijection that maps from M edges, or
member ends, to indices:

f : G:E→ 1;…;Mf g

Antiparallel mates. Each member has two member ends, so we
denote by e=(u,v) and e ¼ ðv;uÞ a pair of antiparallel directed edges,
and define a function p that maps an edge index to the index of its anti-
parallel mate:

p f eð Þð Þ ¼ f eð Þ

for all e inG .E. Since an antiparallel edge is its ownmate'smate, we have
i=p(p(i)) for all i∈1. .M.

Member end sets. Recall that we have a member end set ends(G,u)
associated with each joint u, i.e., the set of member ends incident from
joint u. An analogous notion can be defined for the indices associated
with those member ends.

174 J. Baugh, S. Liu / Structures 6 (2016) 170–181
Let set Si , i=1,2,… ,M, be a set containing all member ends, includ-
ing i itself, incident from a common joint. In other words,

Si ≜ f u; vð Þj u; vð Þ ∈G:E ∧ ∃w: f u;wð Þ ¼ ið Þf g

For instance, our model problem has ends (a,b), (b,a), (b,c), and
(c,b), which we index from 1 through 4. Then S2={2,3} since
f(b,a)=2, edge (b,a) is incident from joint b, and the set of edges
incident from b is {(b,a),(b,c)}

Since a member end can only be incident from a single joint,

Si ∩ Sj ¼ ∅ if and only if ends i and j are not incident from the same joint
Si ¼ Sj otherwise:

ð1Þ
At times we use the condition Si=Sj idiomatically to establish that

ends i and j are incident from the same joint, i.e., are in the same
member end set.

4.1. Distribution matrix

LetKi be the stiffness of themember containing end i, recognizing that,
in general, Ki is not necessarily equivalent to Kp(i). Then let matrixD be an
M×M distributionmatrix, whereDi is the ith column ofD, andwhere dij is
the ratio between the increment of the moment at end i due to the mo-
ment at end j during the distribution process. In other words:

dij ¼
0 if Si ≠ Sj or end i is fixed

−
KiX

k ∈ Si

Kk
otherwise ;

8>><
>>: ð2Þ

which gives D some special properties:

1. D has multiple identical columns. In particular, if Sj=Sk, then Dj is
equivalent to Dk, so

dij ¼ dik if Sj ¼ Sk: ð3Þ

Thus there are at least |Sj | columns identical to column Dj, including
itself. Also, because of Eq. (1), there is at most one distinct negative
value in each row.

2. D is singular.
3. The elements of D are in the range

�1 ≤ dij ≤ 0: ð4Þ

Moreover, an element of D is strictly less than zero (-1≤dijb0) if and
only if Si=Sj and the corresponding joint is not fixed. This implies

dii
¼ 0 if end i is fixed
b 0 otherwise

�
ð5Þ

4. The sum of any column Dj is 0 if end j is fixed, or -1 otherwise:

XM
i¼1

dij ¼
XM
i ¼ 1

Si ¼ Sj

dij ¼ 0 if end j is fixed
−1 otherwise

�
ð6Þ

The added condition on the second summation, Si=Sj, follows
from above, i.e., that an element of D is strictly less than zero if and
only if Si=Sj and the corresponding joint is not fixed.

5. Due to Eqs. (1) and (2),

dij b 0⇒ dp ið Þ; j ¼ 0; ð7Þ
meaning that a particular end is unaffected by the other end of the same
member during the redistribution process.

4.2. Carry-over matrix

Let matrix C be the matrix of carry-over factors. Because the carry-
over moments are only transferred between the two ends of a member,

0 b cij b 1 if j ¼ p ið Þ
cij ¼ 0 otherwise :

�
ð8Þ

Matrix product CD, then, represents the ratio of the carry-over mo-
ment on one end and the calculated unbalanced moment on the other
end of the same member. Matrix CD essentially swaps any two rows
in D that correspond to the two ends of a member, and then multiplies
each row by the corresponding carry-over factor. Also due to Eq. (7), D
and CD cannot both have negative elements at the same position,
i.e., dij(CD)ij=0.

4.3. E matrix

For the iterationmatrices that follow, it is helpful to define amatrix E
as follows

E ¼ Dþ CD ð9Þ

which also has special properties similar to, but in some cases distinct
from, D:

1. Like D, matrix E has multiple identical columns, and if Sj=Sk, then Ej
is equivalent to Ek, so

eij ¼ eik if Sj ¼ Sk: ð10Þ

Thus there are at least |Sj | columns identical to Ej, including itself.
Also, because of Eq. (1), there are at most two distinct negative values
in each row.

2. Also, like D, matrix E is singular.
3. The elements of E are again in the range

�1 ≤ eij ≤ 0: ð11Þ

An element of E is strictly less than zero (-1≤eijb0) if and only if Si=
Sj and the corresponding joint is not fixed, or, in the case of E, any end j
associated with the joint at the opposite end of end i. This again implies

eii ¼ dii
¼ 0 if end i is fixed
b 0 otherwise

�
ð12Þ

and if Si=Sj, then

ep ið Þ; j ¼ cp ið Þ; jeij: ð13Þ

4. When limited to elements i , j satisfying Si=Sj, the sums of columns
Dj and Ej are equivalent:

XM
i ¼ 1
Si ¼ Sj

eij ¼
XM
i ¼ 1
Si ¼ Sj

dij ¼ 0 if end j is fixed
−1 otherwise

�
ð14Þ
4.4. Iteration matrix for simultaneous joint balancing

The simultaneous joint balancing algorithm in Section 2.2, SOLVE-SIM,
is akin to an incremental form of the Jacobi iterative method, in which
calculations of the current iteration use only those from the prior
iteration, so the order in which the equations are solved is irrelevant.

175J. Baugh, S. Liu / Structures 6 (2016) 170–181
The corresponding iteration matrix, Bsim, can be defined as

Bsim ¼ I þ Dþ CD ¼ I þ E ð15Þ

and the iteration can be written as

M kþ1ð Þ ¼ BsimM kð Þ ð16Þ

where MðkÞ is a vector representing moments at each member end at
step k. The limit of Eq. (16) for simultaneous joint balancing3 is

M ∞ð Þ ¼ B∞
simM 0ð Þ: ð17Þ
4.5. Iteration matrix for consecutive joint balancing

The consecutive joint balancing algorithm in Section 2.1, SOLVE-CON,
corresponds to an incremental form of the Gauss–Seidel method, which
uses themost recently updated estimates in each iteration. Consequently,
the equations at each iteration cannot be evaluated independently, and
the order in which they are taken affects the intermediate results.

Like the simultaneous approach, however, the consecutive joint
balancing algorithm can also be represented as a simple iteration but
with a different iterationmatrix, Bcon. We begin by decomposingmatrix
E based on joint contributions as follows

E ¼
XN
l¼1

Êl ð18Þ

where N is the number of joints, and Êl is a square matrix that contains
the columns of E corresponding to all ends connected to joint l, while

the other columns of Êl are zero. The matrix representing the process
of releasing a joint l once, then, can be expressed as

B̂l ¼ I þ Êl ð19Þ

and the iteration matrix for consecutive joint balancing, Bcon, can be
expressed as

Bcon ¼ ∏
N

l¼1
B̂l ¼ ∏

N

l¼1
I þ Êl
� �

ð20Þ

The corresponding iteration can be written as

M kþ1ð Þ ¼ BconM kð Þ ð21Þ

and, in the limit, for consecutive joint balancing we have

M ∞ð Þ ¼ B∞
conM 0ð Þ: ð22Þ

Theorem 1. Let B̂l be thematrix representing the process of releasing a
joint l once, then B̂

2
l ¼ B̂l. Proof. Due to Eqs. (2), (3), (13), and (14),

Ê
2
l

� �
ij
¼
XM
k¼1

Êl
� �

ik
Êl
� �

kj
¼ Êl
� �

ij

XM
k¼1

Dkj ¼ − Êl
� �

ij
; ð23Þ

implying that

Ê
2
l þ Êl ¼ 0; ð24Þ

which holds even even when members are not symmetric, i.e., when
Ki≠Kp(i). Then

2Êl þ Ê
2
l ¼ Êl

⇒I þ 2Êl þ Ê
2
l ¼ I þ Êl

⇒ I þ Êl
� �2

¼ I þ Êl

⇒B̂
2
l ¼ B̂l

ð25Þ
3 The equivalent closed-form solution given by Mozingo [13], though not used here, is
Mð∞Þ ¼ ðI þ DÞðI � CDÞ�1Mð0Þ .
The physical interpretation of Theorem 1 is that releasing a particu-
lar joint twice consecutively is the same as doing so only once. This
makes sense because, as we saw with algorithm SOLVE-MUL, there will
be a zero unbalanced moment left after any release.

5. Correctness of the sequential algorithm

The sequential algorithm defined in Section 3.1 can be shown to be
functionally equivalent to the consecutive and simultaneous joint
balancing algorithms presented in Sections 2.1 and 2.2. The computa-
tions performed are analogous to Eq. (16) but with a generalized itera-
tion matrix, Bseq(k), that depends on k, the index of iteration, and where
k=0 corresponds to the initial state Bseq

(0)= I. It can be written as

B kð Þ
seq ¼ I þ

X
l∈V kð Þ

Êl; k ¼ 1;2;3; ::: ð26Þ

where V (k) is a schedule set containing all joints to be released simulta-
neously at the kth iteration. The iteration can be written as

M kþ1ð Þ ¼ B kð Þ
seqM kð Þ: ð27Þ

The limit of Eq. (27) for generalized sequential iteration is

M� ¼ ∏
∞

k¼0
B kð Þ
seqM

0ð Þ: ð28Þ

As one would expect, both simultaneous and consecutive iterations
are special cases that can be accommodated by choosing an appropriate
schedule set V(k). For simultaneous joint balancing, each V(k) may be
chosen to include all joints, so we have

B kð Þ
seq ¼ I þ

XN
l¼1

Êl ¼ I þ E ¼ Bsim: ð29Þ

For consecutive joint balancing, each V (k) may be chosen to be a sin-
gle joint (k-1modN)+1, so everyN iterationswe build up a sequence of
products

∏
N

l¼1
B lð Þ
seq ¼ ∏

N

l¼1
I þ Êl
� �

¼ Bcon: ð30Þ

Example. Consider a structure with three joints, so we have Ê1, Ê2,

and Ê3, and schedule sets whose first few values are arbitrarily chosen
as follows:

V 1ð Þ ¼ Ê1;V
2ð Þ ¼ Ê2 þ Ê3;V

3ð Þ ¼ Ê1;V
4ð Þ ¼ Ê1 þ Ê3;V

5ð Þ ¼ :::

Using the schedule sets, we show that the product of the first k itera-
tion matrices in the sequence, defined as G(k), can be expanded as a sum
of matrix products

G kð Þ ¼ ∏
k

i¼0
B ið Þ
seq ð31Þ

so that GðkÞMð0Þ ¼ ∏
k

i¼0
BðiÞ
seqM

ð0Þ is the moment vector after the kth itera-

tion. During the expansion, we perform simplifications such as gather-
ing and canceling terms, yielding the following:

Gð1Þ ¼ ∏
1

i¼0
BðiÞ
seq ¼ I þ Ê1

G 2ð Þ ¼ ∏
2

i¼0
B ið Þ
seq ¼ I þ Ê1

� �
I þ Ê2 þ Ê3
� �

¼ I þ Ê1 þ Ê2 þ Ê3 þ Ê1Ê2 þ Ê1Ê3

176 J. Baugh, S. Liu / Structures 6 (2016) 170–181
G 3ð Þ ¼ ∏
3

i¼0
B ið Þ
seq ¼ I þ Ê1

� �
I þ Ê2 þ Ê3
� �

I þ Ê1
� �

¼ I þ Ê1 þ Ê2 þ Ê3 þ Ê1Ê2 þ Ê1Ê3 þ Ê2Ê1 þ Ê3Ê1 þ Ê1Ê2Ê1 þ Ê1Ê3Ê1

G 4ð Þ ¼ ∏
4

i¼0
B ið Þ
seq ¼ I þ Ê1

� �
I þ Ê2 þ Ê3
� �

I þ Ê1
� �

I þ Ê1 þ Ê3
� �

¼ I þ Ê1 þ Ê2 þ Ê3 þ Ê1Ê2 þ Ê1Ê3 þ Ê2Ê1 þ Ê3Ê1 þ Ê1Ê2Ê1 þ Ê1Ê3Ê1
þ Ê2Ê3 þ Ê1Ê2Ê3 þ Ê2Ê1Ê3 þ Ê3Ê1Ê3 þ Ê1Ê2Ê1Ê3 þ Ê1Ê3Ê1Ê3

And so on. Terms in the simplified series, e.g., matrix products like

Ê1Ê3Ê1, are unique: even when subsequent iterations produce a dupli-
cate term, they also simultaneously produce a corresponding canceling

term, e.g., Ê1Ê3Ê1 þ Ê1Ê3Ê
2
1, whose sum is zero due to Eq. (24), since Ê

2
l þ

Êl ¼ 0. We show this below.

Theorem 2. For an arbitrary series of schedule sets V (k), k=1,2,3,…, if
each joint is balanced infinitely often, then generalized sequential itera-
tion is equivalent to the following sum:

∏
∞

k¼0
B kð Þ
seq ¼

X∞
m¼0

Um; ð32Þ

where

U0 ¼ I ð33Þ

and

Um ¼ ∑ N

l1¼1 ∑N
l2 ¼ 1
l2≠l1

∑N
l3 ¼ 1
l3≠l2

⋯ ∑N
lm ¼ 1

lm≠l m−1ð Þ

Êl1 Êl2 Êl3…Êlm ð34Þ

Proof. The left-hand side of Eq. (32) accommodates an arbitrary se-
ries of schedule sets and is equivalent to the constant right-hand side
expression, which depends only on the properties and layout of a
structure.

Recalling that G(k) is the product of the first k iteration matrices in
the sequence, let

ΔG kð Þ ¼ G kð Þ � G k�1ð Þ; k ¼ 1;2;3;… ð35Þ

and

ΔG 0ð Þ ¼ G 0ð Þ ¼ I: ð36Þ

Since GðkÞMð0Þ and Gðk�1ÞMð0Þ are the moment vectors after the
kth and (k -1)th iterations, respectively, the physical interpretation
of ΔGðkÞMð0Þ ¼ GðkÞMð0Þ � Gðk�1ÞMð0Þ is the increment of the moment
vector in the kth iteration.

This implies when k≥1 that

ΔG kð Þ ¼ B kð Þ
seqG

k−1ð Þ−G k−1ð Þ

¼ I þ
X
l∈V kð Þ

Êl

0
@

1
AG k−1ð Þ−G k−1ð Þ

¼
X
l∈V kð Þ

ÊlG
k−1ð Þ;

ð37Þ

which is central to the proof that follows.
The left-hand side products of Eq. (32) can now be rewritten as the

summation

∏
∞

k¼0
B kð Þ
seq ¼

X∞
k¼0

ΔG kð Þ: ð38Þ
Then it can be proved by induction on m that

X∞
k¼0

ΔG kð Þ ¼
X∞
m¼0

Um ð39Þ

by first showing that the left-hand side containsU0 and U1 exactly once,
and then showing that if it containsUm exactly once, it likewise contains
Um+1 exactly once. It can likewise be shown that there are no duplicate
terms on the left-hand side after simplification. In addition, due to the
nature of Bseq(k), i.e., that it consists only of I and El terms, no other forms
can be present.

Basis. For m=0, we know from Eq. (37) that I will not appear as a
term in ΔG(k) when k≥1. Thus the limit contains ΔG(0)=U0= I exactly
once. Form=1, if Bseq(k) is the first Bseq term that contains Êl, then because
of Eq. (37) and the fact thatGðk�1Þ ¼ ∑k�1

k¼0 ΔGðkÞ has the termΔG(0)= I,
ΔG(k) is also the first ΔG term that contains Êl. Because all joints get up-
dated infinitely often, for each Êl; l ¼ 1;2;…;N, there exists a k such that
Bseq
(k) contains that Êl. Thus the limit contains all Ê1; Ê2;…; ÊN. In addition,

ΔG(k) is the onlyΔG term that contains Êl after simplification. The reason
is that ifΔG(j) for jNk also contains Êl, then Bseq

(j) must contain Êl. SinceG
(j-1)

contains both I and Êl exactly once, from Eq. (37) we knowΔG(j) contains
both Êl and Ê

2
l exactly once,which cancel each other due to Eq. (24). Thus,

all terms in U1, i.e., Ê1; Ê2; :::; ÊN , occur exactly once.
Hypothesis. Assume that the left-hand side contains Um exactly

once.
Inductive step. Show that the left-hand side contains Um+1 exactly

once.
If G(k) is the first G term that contains a particular term u of Um after

simplification, say u ¼ Êlw that leads with Êl, then Bseq
(k) must contain Êl.

1. Let Bseq(j) , jNk be the next Bseq term that contains Êi, i≠ l, then Êiu first
appears in ΔG(j) due to Eq. (37). Moreover, ΔG(j) is the only ΔG term
that contains Êiu after simplification. The reason is that, if ΔG(q) ,qN j
also contains Êiu, then Bseq

(q) must contain Êi . Since G(q-1) contains
both u and Êiu exactly once, ΔG(q) contains both Êiu and Ê

2
i u exactly

once, which cancel each other due to Eq. (24). Thus, together with
the fact that all joints get updated infinitely often, the above state-
ments prove that the limit contains Um+1 exactly once.

2. Let Bseq(j) , jNk be the next Bseq term that contains Êl . Since G(j-1) con-
tains both w and Êlw exactly once, from Eq. (37) ΔG(j) contains
both Êlw and Ê

2
l w exactly once, which cancel each other due to

Eq. (24) Hence, the limit cannot have terms with the same index in
any two consecutive El terms after simplification.

As a result, the left-hand side contains Um+1 exactly once, and there
are no extraneous terms.

Hence Theorem 2 is true, proving that the sequential algorithm is
functionally equivalent to its consecutive and simultaneous joint
balancing refinements.

6. Correctness of the multiprocess algorithm

Further generalizing the sequential algorithm is themultiprocess ab-
straction defined in Section 3.2, which can be shown to be equivalent,
while offering the full range of asynchronous behavior allowed by the
Hardy Cross method. To accommodate the arbitrary interleaving of re-
leases, we further decompose matrix E and again prove equivalence
by induction.

6.1. Further decomposition of E matrix

Thematrix E can be further decomposed in two dimensions. In other
words, instead of Eq. (18), E can be defined as

E ¼
XN
i¼1

XN
j¼1

i; j½ � ð40Þ

177J. Baugh, S. Liu / Structures 6 (2016) 170–181
whereN is the number of joints. Recalling thatM is the number ofmem-
ber ends, we adopt the unconventional but serviceable notation [i, j] to
denote anM×M square matrix such that

i; j½ �kl ¼
Ekl ≤ 0 if ends k and l are connected to joints i and j; respectively
0 otherwise

:

�

ð41Þ

Matrix [i, j] contains some elements of E whose rows correspond to
all ends connected to joint i, and whose columns correspond to all
ends connected to joint j. The other elements of matrix [i, j] are zero.
Due to the properties of matrix D, we see that

i; i½ �kl ¼
Dkl ≤ 0 if end l is connected to join i
0 otherwise

�
ð42Þ

and the column sum of matrix [i, i] is

X
k

i; i½ �kl ¼
−1 if end l is connected to joint i
0 otherwise

:

�
ð43Þ

The physical interpretation of [i, j] is how the moments at joint i are
affected by joint j. Thus, when i= j, ½i; j�MðkÞ is the redistribution step for

the unbalanced moment at joint i. When i≠ j, ½i; j�MðkÞ is the action of
joint j carrying over a moment to a particular end of joint i. Although
[i, j] is zero if joints i and j are not connected, or if joint j is fixed, this
case need not be addressed separately for purposes of the proof.

There are two important properties of matrix [i, j] that are required
for proofs later in this section. Due to Eqs. (41), (42) and (43),

�; j½ � j; j½ � ¼ � �; j½ � ð44Þ

and

�; i½ � k; j½ � ¼ 0; i≠k: ð45Þ

where the following wildcard notation is adopted:

1. Let [*, j] stand for any matrix in the set {[i,k]| i∈1. .N∧ j=k}.
2. Let [?, j] stand for any matrix in the set {[i,k]| i∈1. .N∧ j=k∧ i≠ j}.
3. Let ∑ [*, j] be the sum of the set {[i,k]| i∈1. .N∧ j=k}, so clearly

X
�; j½ � ¼ Ê j: ð46Þ

4. Let ∑ [?, j] be the sum of the set {[i,k]| i∈1. .N∧ j=k∧ i≠ j}.

6.2. Elementary operations

The multiprocess algorithm can be represented as a series of ele-
mentary operations, i.e., as a series of [i, j] matrices. Here, an elementary
operation is defined to be atomic, i.e., it is not interfered with by other
elementary operations. The action of releasing a joint j, then, can be de-
scribed as follows:

1. Start by taking a “snapshot,” say M0 , of the current member end
moments.

2. Calculate the increments of moments based on M0 without making
any updates. The increments need not be immediately added to M,
and their application order is arbitrary, so we can imagine their
being kept in a pending operation set, O.

3. Pick one of the increments from operation set O and add it to M.
4. Ensure that increments within joint j, ½ j; j�M0, are added toM before

releasing joint j again.

Commentary. Since any matrix [?, j] has at most one row containing
non-zero elements, it only updates one value of the moment vector.
Although [j, j] could update multiple values of the moment vector be-
cause it could have multiple rows that contain non-zero elements, [j, j]
can still be considered an elementary operation due to item 4 above.
Thus, from a computational point of view, if updates are performed
atomically, then themultiprocess algorithm can be viewed as interleav-
ing elementary operations arbitrarily. An available elementary operation
then is either 1) a joint taking a snapshot and calculating increments of
moments if no balancing moment for that joint is pending in operation
set O, or 2) moving a matrix multiplication result from O to M.

This arbitrary interleaving can also be shown in mathematical form:

M kþ1ð Þ ¼ W kþ1ð ÞM kð Þ

¼
M kð Þ if an arbitrary joint takes a snapshot and

calculates increments of moments

M kð Þ þ i; j½ �M lð Þ if an arbitrary matrix products is moved
from Ο to M

8><
>:

ð47Þ

whereW(k+1) is a function that performs an arbitrary available elemen-

tary operation onMðkÞ at step k+1, as long as every joint is updated in-
finitely often and each joint finishes updating itself before it is released
again.

The limit of Eq. (47) for generalized multiprocess iteration is

M� ¼ W ∞ð Þ…W 3ð ÞW 2ð ÞW 1ð Þ
� �

M 0ð Þ: ð48Þ

By placing restrictions onW in choosing the order of the elementary
operations, one may obtain the more specialized behavior of the se-
quential algorithm. Specifically, to mimic the sequential refinement,
once operations in O begin to be executed, all operations in O must be
executed before moving on to other joints and taking snapshots.

Theorem 3. For an arbitrary series of elementary operationsW(k), k=
1,2 ,3 ,…, if each joint is balanced infinitely often, then generalized
multiprocess iteration is equivalent to the following sum:

W ∞ð Þ…W 3ð ÞW 2ð ÞW 1ð Þ ¼
X∞
m¼0

Zm; ð49Þ

where

Z0 ¼ I ð50Þ

and

Zm ¼ ∑
j1

∑ �; j1½ �
 !

∑
j2≠ j1

∑ �; j2½ �
 !

… ∑
jm≠ jm−1

�; jm½ �
 !

ð51Þ

Proof. The left-hand side of Eq. (49) accommodates an arbitrary series
of elementary operations and is equivalent to the constant right-hand
side expression, which, again, depends only on the properties and layout
of a structure. And, of course, due to Eq. (46), the right-hand sides of
Eqs. (32) and (49) must be identical.

Webegin by defining P(k), a partial series of elementary operations, as:

M kð Þ ¼ W kð Þ…W 3ð ÞW 2ð ÞW 1ð Þ
� �

M 0ð Þ ¼ P kð ÞM 0ð Þ ð52Þ

with P(0)= I. Using this notation, the basic steps of the multiprocess al-
gorithm can be described as follows:

1. When releasing a joint j at step k, the snapshot taken is the current P(k).
Then, an elementary operation set containing all [*, j]P(k) is added to O.

2. In an arbitrary order, elementary operations are drawn from O and
added to P.

3. We require that [j, j]P(k) be executed before releasing joint j again.

178 J. Baugh, S. Liu / Structures 6 (2016) 170–181
4. All joints must be released infinitely often. Thus an elementary
operation set containing all [*, j]P(k) is added to O infinitely often.

In the limit, we have

M� ¼ W ∞ð Þ…W 3ð ÞW 2ð ÞW 1ð Þ
� �

M 0ð Þ ð53Þ

To assist in carrying out the proof, we add a final piece to the
notation:

Ẑ
j
m ¼

X
j1≠ j

X
�; j1½ �

0
@

1
A X

j2≠ j1

X
�; j2½ �

0
@

1
A…

X
jm≠ jm−1

X
�; jm½ �

0
@

1
A ð54Þ

with

Ẑ
j
0 ¼ I: ð55Þ

The relationship between Z and Ẑ is

Zm ¼
X
j

X
�; j½ �Ẑ j

m−1: ð56Þ

Then it can be proved by induction on m that

W ∞ð Þ…W 3ð ÞW 2ð ÞW 1ð Þ ¼
X∞
m¼0

Zm ð57Þ

by first showing that the left-hand side contains Z0 and Z1 exactly once,
and then showing that if it contains Zm exactly once, it likewise contains
Zm+1 exactly once, and that there are no extraneous terms.

Basis. For m=0, we know that I appears exactly once in the left-
hand side. For m=1, Z1 appears exactly once when each joint is first
released.

Hypothesis. Assume that the left-hand side contains Zm exactly once.
Inductive step. Show that the left-hand side contains Zm+1 exactly

once.

1. Since all joints will be released infinitely often, all terms in Zm will be
pre-multiplied by ∑

j
½�; j�, so Zm+1 appears in the left-hand side.

2. Because of Eq. (56), the only possible extra terms thatmay be created

in this process are ½�; j�½ j; j�Ẑ j
m�1 or ½�; j�½?; j�Ẑ j

m�1. The existence of

½�; j�Ẑ j
m�1 implies the existence of Ẑ

j
m�1 that will also get pre-

multiplied by [*, j] at the same time, which results in a duplicat-

ed ½�; j�Ẑ j
m�1. Since ½�; j�½ j; j�Ẑ j

m�1 ¼ �½�; j�Ẑ j
m�1 according to Eq. (44)

above, ½�; j�½ j; j�Ẑ j
m�1 gets canceled by the duplicated ½�; j�Ẑ j

m�1. Mean-

while, ½�; j�½?; j�Ẑ j
m�1 is always zero due to Eq. (45) above. As a result,

the left-hand side has no extraneous terms.
3. Obviously, adding any term from Zm+1, say ½�; j�Ẑ

j
m, the first timewill

not create a duplicate term. Because [j, j]P(k) must be executed before

releasing joint j again, when ½�; j�Ẑ j
m gets created again, ½ j; j�Ẑ j

m must

exist and ½�; j�½ j; j�Ẑ j
m ¼ �½�; j�Ẑ j

m must also be created at the same

time. Hence the duplicate ½�; j�Ẑ j
m will be canceled.

The duplicated ½�; j�Ẑ j
m and its corresponding extra term ½�; j�½ j; j�Ẑ j

m
will always be moved from O to P(k) at the same time, due to the fact
that Ẑ

j
m and ½ j; j�Ẑ j

m are in the same snapshot.
As a result, the left-hand side contains Zm+1 exactly once, and there

are no extraneous terms.
Hence Theorem 3 is true, proving that the multiprocess algorithm is
functionally equivalent to its sequential refinement. □

We note that, in both theorems, the fact that the column sum of
matrix D is -1 for non-fixed joints plays a central role in simplifying
and eliminating terms.

7. Conclusion

Despite its age, the Hardy Cross method has been the subject of the
occasional publication over the years. Beyond the already cited work
of Volokh, Guo, and Mozingo, in 2009 Dowell [4] found closed-form so-
lutions for regular continuous beams and bridge structures with any
number of spans. His method is based on the consecutive joint
balancing approach, and is derived by taking the limit of infinite geo-
metric series. Presaging his work are the formulas presented by
Mawby [11] in 1968 for two- and three-span continuous beams, who
likewise recognized the fact that “the process of Moment Distribution
is merely an approximate method for finding the sum of several series
that converge at infinity.” Earlier publications looking into computa-
tional aspects of the method, including tables and formulas for fixed-
endmoments, symmetry and anti-symmetry considerations, and others
are cited in Gere's extensive bibliography [6].

In this study, we extend the work of both Volokh and Guo by show-
ing that arbitrary distribution sequences and further generalizations
leave themethod sound and intact, andwe formalize those abstractions
as nondeterministic sequential andmultiprocess algorithms. To the au-
thors' knowledge, this is the first endeavor at a treatment of this kind.

In someways, our proofs are unconventional. We take the tradition-
al statement of the moment distribution method—formalized by SOLVE-
SIM and SOLVE-CON—as being correct, and prove that SOLVE-SEQ and SOLVE-

MUL are correct by showing equivalence. We could contrast this ap-
proach with the tools and techniques more commonly found in both
numerical analysis and software engineering. Regarding the former,
for instance, convergence as a property is already established for
SOLVE-SIM and SOLVE-CON due to the work of Volokh and Guo. Buttressing
their arguments, we have observed that the eigenvalues of the iteration
matrix for simultaneous joint balancing lie between −0.5 and 1, inclu-
sive, by making use of the Gershgorin circle theorem. Regarding the lat-
ter, in contrast with studies on software engineering techniques, ours
does not start with the kind of specification that would enable a
straightforward syntactic proof. For sequential programs, however, we
now know as a result that the simultaneous release of an arbitrary sub-
set of joints can be used as a loop invariant for partial correctness proofs.

Also on the topic of proofs, we make the observation that the prop-
erty of a matrix A in Eq. (24), i.e., A2+A=0, plays an important role in
proving equivalence and is therefore one of the sufficient and possibly
necessary conditions for correctness, and might find a similar role if
generalized and applied to other iterative problems in numerical linear
algebra.

Finally, about implementations, our rationale for presenting Python
code in Appendix A is not because we expect to improve performance
by distributing computation across multiple processors, but rather to
present the algorithms in executable form and in the context of a popu-
lar programming language with multithreading support. Although
problems typically addressed bymoment distribution are small enough
to avoid any concern at all about computation time, we imagine that
performance gains for problems of modest size could be obtained
through parallelization if one employs red-black ordering, block relaxa-
tion schemes, or other techniques for reducing synchronization costs in
the iterative solution of sparse linear systems [15].

Acknowledgments

The authors wish to thank Prof. George Turkiyyah at the American
University of Beirut for his comments on an earlier draft of this article.

Appendix A. Program Listings

Implementation of the basic and sequential algorithms

179J. Baugh, S. Liu / Structures 6 (2016) 170–181

Implementation of the multiprocess algorithm

180 J. Baugh, S. Liu / Structures 6 (2016) 170–181

181J. Baugh, S. Liu / Structures 6 (2016) 170–181
References

[1] Cross H. Analysis of continuous frames by distributing fixed-end moments. Proc Am
Soc Civ Eng 1930:919–28.

[2] Cross H, Morgan ND. Continuous frames of reinforced concrete. John Wiley & Sons,
Inc.; 1932

[3] Dijkstra EW, FeijenWHJ, Van Gasteren AJM. Derivation of a termination detection al-
gorithm for distributed computations. Inf Process Lett 1983;16:217–9.

[4] Dowell RK. Closed-form moment solution for continuous beams and bridge struc-
tures. Eng Struct 2009;31(8):1880–7.

[5] Eaton LK. Hardy Cross and the moment distribution method. Nexus Network J 2001;
3(2):15–24.

[6] Gere JM. Moment distribution. Van Nostrand; 1963.
[7] Golub GH, Van Loan CF. Matrix computations. 3rd ed. The Johns Hopkins University

Press; 1996.
[8] Guo Y. On a method of structural analysis. Appl Math Mech 1987;8(6):489–95.
[9] Lamport L. The PlusCal algorithm language. Theoretical aspects of computing —

ICTAC 2009. Springer; 2009. p. 36–60.
[10] Liu S. On convergence of the Hardy Cross method of moment distribution. [Master'’s
thesis] North Carolina State University; 2014.

[11] Mawby M. Formulae for continous beams. Proc Inst Civil Eng 1968;41(2):339–50.
[12] McCormac JC. Structural analysis. 3rd ed. Intext Educational Publishers; 1975.
[13] Mozingo RR. Matrix distribution. J Struct Div Proc Am Soc Civ Eng 1968;94(ST4):

1043–52.
[14] Python software foundation. Welcome to Python.org. http://www.python.org

(accessed 24.11.15).
[15] Saad Y. Iterative methods for sparse linear systems. 2nd ed. Philadelphia, PA: SIAM;

2003.
[16] Schneider S. The B-method: an introduction. Oxford: Palgrave; 2001.
[17] Turing AM. Computing machinery and intelligence. Mind 1950:433–60.
[18] Volokh KYu. On foundations of the Hardy Cross method. Int J Solids Struct 2002;

39(16):4197–200.
[19] Williamson T, Olsson RA. PySy: a python package for enhanced concurrent program-

ming. Concurrency Comput Pract Exper 2014;26(2):309–35.

http://refhub.elsevier.com/S2352-0124(16)30005-4/rf0005
http://refhub.elsevier.com/S2352-0124(16)30005-4/rf0005
http://refhub.elsevier.com/S2352-0124(16)30005-4/rf0010
http://refhub.elsevier.com/S2352-0124(16)30005-4/rf0010
http://refhub.elsevier.com/S2352-0124(16)30005-4/rf0015
http://refhub.elsevier.com/S2352-0124(16)30005-4/rf0015
http://refhub.elsevier.com/S2352-0124(16)30005-4/rf0020
http://refhub.elsevier.com/S2352-0124(16)30005-4/rf0020
http://refhub.elsevier.com/S2352-0124(16)30005-4/rf0025
http://refhub.elsevier.com/S2352-0124(16)30005-4/rf0025
http://refhub.elsevier.com/S2352-0124(16)30005-4/rf0030
http://refhub.elsevier.com/S2352-0124(16)30005-4/rf0035
http://refhub.elsevier.com/S2352-0124(16)30005-4/rf0035
http://refhub.elsevier.com/S2352-0124(16)30005-4/rf0040
http://refhub.elsevier.com/S2352-0124(16)30005-4/rf0045
http://refhub.elsevier.com/S2352-0124(16)30005-4/rf0045
http://refhub.elsevier.com/S2352-0124(16)30005-4/rf0050
http://refhub.elsevier.com/S2352-0124(16)30005-4/rf0050
http://refhub.elsevier.com/S2352-0124(16)30005-4/rf0055
http://refhub.elsevier.com/S2352-0124(16)30005-4/rf0060
http://refhub.elsevier.com/S2352-0124(16)30005-4/rf0065
http://refhub.elsevier.com/S2352-0124(16)30005-4/rf0065
http://python.org
http://www.python.org
http://refhub.elsevier.com/S2352-0124(16)30005-4/rf0070
http://refhub.elsevier.com/S2352-0124(16)30005-4/rf0070
http://refhub.elsevier.com/S2352-0124(16)30005-4/rf0075
http://refhub.elsevier.com/S2352-0124(16)30005-4/rf0080
http://refhub.elsevier.com/S2352-0124(16)30005-4/rf0085
http://refhub.elsevier.com/S2352-0124(16)30005-4/rf0085
http://refhub.elsevier.com/S2352-0124(16)30005-4/rf0090
http://refhub.elsevier.com/S2352-0124(16)30005-4/rf0090

	A general characterization of the Hardy Cross method as sequential and multiprocess algorithms
	1. Introduction
	2. Problem representation and basic algorithms
	2.1. Consecutive joint balancing
	2.2. Simultaneous joint balancing

	3. Abstraction of the basic algorithms
	3.1. A sequential algorithm
	3.2. A multiprocess algorithm

	4. Iteration matrices for consecutive and simultaneous approaches
	4.1. Distribution matrix
	4.2. Carry-over matrix
	4.3. E matrix
	4.4. Iteration matrix for simultaneous joint balancing
	4.5. Iteration matrix for consecutive joint balancing

	5. Correctness of the sequential algorithm
	6. Correctness of the multiprocess algorithm
	6.1. Further decomposition of E matrix
	6.2. Elementary operations

	7. Conclusion
	Acknowledgments
	References

