I A theorem on linear homogeneous 2nd order ODE

Theorem Consider the linear second order homogenous ODE

\[a(x)y'' + b(x)y' + c(x)y = 0 \quad (**) \]

where \(a(x), b(x) \) and \(c(x) \) are continuous on some interval \(I \), and \(a(x) \) never vanishes on \(I \).

(a) (The representation theorem) Let \(y_1 \) and \(y_2 \) be two linearly independent solutions on \(I \) of (**) . Then every solution \(y \) on \(I \) of (**) can be represented in the form

\[y = c_1y_1 + c_2y_2 \]

for some constants \(c_1 \) and \(c_2 \).

(b) (The linear independence theorem) Two solutions \(y_1 \) and \(y_2 \) on \(I \) of (**) are linearly independent on \(I \) if and only if the Wronskian \(W(y_1, y_2)(x) \) of \(y_1 \) and \(y_2 \) defined below is not zero for some \(x \in I \).

\[W(y_1, y_2)(x) = \det \begin{pmatrix} y_1(x) & y_2(x) \\ y_1'(x) & y_2'(x) \end{pmatrix} \]

II Constant coefficients

Assume that \(a(x), b(x) \) and \(c(x) \) in (**) are all constants, with \(a \neq 0 \), so the ODE is now in the form

\[ay'' + by' + cy = 0 \quad (\ddagger) \]

Substituting \(y = e^{rx} \) into (\ddagger) above and canceling the common factor \(e^{rx} \) we obtain the characteristic equation of the ODE (\ddagger):

\[ar^2 + br + c = 0 \]

The solutions of this equation are given by the quadratic equation:

\[r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

Case I \(b^2 - 4ac > 0 \). Then we have two real distinct roots \(r_1 \) and \(r_2 \), with \(r_1 \neq r_2 \), and two linearly independent solutions on \(\mathbb{R} \) of (\ddagger) are \(y_1 = e^{r_1x} \) and \(y_2 = e^{r_2x} \). The general solution in this case is

\[y = c_1e^{r_1x} + c_2e^{r_2x} \]

Case II \(b^2 - 4ac = 0 \). Then we have a repeated root \(r_1 = r_2 \). Two linearly independent solutions on \(\mathbb{R} \) of (\ddagger) are \(y_1 = e^{r_1x} \) and \(y_2 = xe^{r_1x} \). The general solution in this case is

\[y = (c_1 + c_2x)e^{r_1x} \]

Case III \(b^2 - 4ac < 0 \). Then we have a pair of complex conjugate roots \(r_1 = \alpha + i\beta \) and \(r_2 = \alpha - i\beta \). Two linearly independent solutions on \(\mathbb{R} \) of (\ddagger) are \(y_1 = e^{\alpha x}\cos(\beta x) \) and \(y_2 = e^{\alpha x}\sin(\beta x) \). The general solution in this case is

\[y = e^{\alpha x}(c_1 \cos(\beta x) + c_2 \sin(\beta x)) \]
The non-homogeneous problem

Theorem (The representation theorem) Consider the linear second order non-homogenous ODE

\[a(x)y'' + b(x)y' + c(x)y = f(x) \quad (** \dagger) \]

where \(a(x), b(x), c(x) \) and \(f(x) \) are continuous on some interval \(I \), and \(a(x) \) never vanishes on \(I \). Let \(y_1 \) and \(y_2 \) be two linearly independent solutions on \(I \) of the associated homogeneous equation \((**\)\) above, and let \(y_p \) be a particular solution\(^1\) of the non-homogeneous equation \((** \dagger)\). Then every solution \(y \) on \(I \) of \((** \dagger)\) can be represented in the form

\[y = c_1 y_1 + c_2 y_2 + y_p \]

for some constants \(c_1 \) and \(c_2 \).

Finding particular solutions

- **Method of undetermined coefficients**
 See the textbook for the general case.

- **Method of variation of parameters for the general case**
 Let \(y_1 \) and \(y_2 \) be two linearly independent solutions on \(I \) of the homogeneous equation \(a(x)y'' + b(x)y' + c(x)y = 0 \) where \(a(x), b(x) \) and \(c(x) \) are continuous on some interval \(I \), and \(a(x) \) never vanishes on \(I \). Then by division by \(a(x) \) we can put the equation into the form

\[y'' + p(x)y' + q(x)y = g(x) \]

where \(p(x), q(x) \) and \(g(x) \) are continuous on \(I \). The method of variation of parameters yields a particular solution to this non-homogeneous equation.

NOTE: The formulas below required that the ODE be put in the above form, where the coefficient of \(y'' \) is 1.

We assume a solution of the form \(y_p = u_1(x) y_1 + u_2(x) y_2 \). The formulas for \(u_1 \) and \(u_2 \) are

\[
 u_1 = \int \frac{-y_2 g(x)}{W(y_1, y_2)} \, dx \quad u_2 = \int \frac{y_1 g(x)}{W(y_1, y_2)} \, dx
\]

where the convention is that we choose 0 for the additive constants. Then the particular solution is given by

\[
 y_p = y_1 \left(\int \frac{-y_2 g(x)}{W(y_1, y_2)} \, dx \right) + y_2 \left(\int \frac{y_1 g(x)}{W(y_1, y_2)} \, dx \right)
\]

\(^1\)i.e. \(y_p \) contains no arbitrary constants