Solve the following problems.

(1) [5 Pts] Let A be a bounded linear operator on a Hilbert space H and $S \subset H$ be a closed subspace. S is an invariant subspace of A if $Ax \in S$ for all $x \in S$.
(a) Prove that if A is self-adjoint and S is an invariant subspace of A, then S^\perp is also an invariant subspace of A.
(b) Show that if S is an invariant subspace of A and A is not self-adjoint, then S^\perp is not necessarily an invariant subspace of A (i.e., find a counterexample).

(2) [5 Pts] (a) Let P be a self-adjoint bounded linear operator on a Hilbert space H such that $P^2 = PP = P$. Show that $P(H)$ is a closed subspace of H and that any $x \in H$ has a unique decomposition
\[x = Px + z, \]
where $z = x - Px \in (P(H))^\perp$.
(b) Suppose that $P \neq 0$ satisfies (1), where $Px \in M$, M is a closed subspace of a Hilbert space H and $z \in M^\perp$. Show that P is a linear self-adjoint operator and satisfies $P^2 = P$.

(3) [5 Pts] The range of a bounded linear operator on a Hilbert space H need not be closed. Consider the multiplication operator $M(x(t)) = tx(t)$ on $L^2((0, 1))$ and show that the range of M is dense in $L^2([0, 1])$, but is not closed.